
Training HMMs in GMTK

John T. Halloran
Department of Electrical Engineering

University of Washington

June 15, 2015

Abstract

The Graphical Models ToolKit (GMTK) is a powerful and flexible prototyping language
for designing dynamic Bayesian networks (DBNs). This tutorial is meant to help new users’
understanding of GMTK by presenting hidden Markov models (HMMs) which make use of some
of the software’s large number of features. Generative and discriminative training approaches
supported in GMTK are discussed with relevant examples, as well as testing using an HMM for
a simple classification task. All described models and scripts are available in the tarball housing
this document.

The following examples are intended for those interested in using the Graphical Models ToolKit
(GMTK) to perform various forms of inference/learning utilizing graphical models. Using GMTK,
we will first train and test a hidden Markov model (HMM) whose emission states are discrete
(Section 1), then train and test one whose emission states are real valued (conditionally Gaussian)
(Section 2). Also discussed are generative and discriminative training approaches supported in
GMTK.

1 Classifying the weather: discrete observations

Consider the scenario wherein the area you work/reside only encounters three types of weather:
sunny, rainy, and foggy. Assume that you go to work in an office everyday, and during your working
hours you do not get to see nor experience a given days weather (you’re office also has no windows
looking outside; this was my office in Hawaii ironically enough). Curiosity mounts as time goes
on and you become more and more curious about what the daily weather is. Your hope lies in
that you have an office mate who comes in hours later than you, and this office mate brings in an
umbrella some days, and no umbrella all other days.

In the framework of the HMM, the hidden layer is the state of the weather (indeed, it is hidden from
you). The observed layer consists of the daily observations of weather your office mate has brought

1

X0 X1 …

O0 O1

Xn

On

Figure 1: Hidden Markov Model (HMM) of length n. Shaded nodes, Ot are observed, unshaded,
Xt are hidden. The Markov chain Xt−1 → Xt → Xt+1 is called the hidden layer, while the lower
level of nodes is called the observed layer.

an umbrella to the office or not. Formally, let X be a random variable such that X ∈ {0, 1, 2},
where state 0 denotes sunny, state 1 denotes rainy, and state 2 denotes foggy. We assume that the
Xs are first-order Markov, i.e., denoting a specific day by t and the corresponding random variable
describing the weather of that day as Xt, Xt+1 is indepedent of Xt−1 given Xt. Let O be a random
variable s.t. O ∈ {0, 1}, where Ot = 0 if your coworker did not bring an umbrella into the office
that day and Ot = 1 otherwise. The graphical representation of the HMM is available in figure 1.

In the graph, Ot is a child of Xt, as is Xt+1 for t > 0 (assume that all observations began at day
0). Thus, after n days, the joint distribution over these variables will be the following:

p(X0, X1, X2, . . . , Xn, O0, . . . , On) = p(X0)p(X1|X0)p(X2|X0, X1) . . .

p(O0|X0, . . . , Xn)p(O1|O0, X0, . . . , Xn) . . .

p(On|O0, . . . , On−1, X0, . . . , Xn), by Bayes’ rule

= p(X0)p(X1|X0)p(X2|X1) . . .

p(O0|X0)p(O1|X1)p(On|Xn)

by the HMM conditional independence properties

= p(X0)
n∏

t=1

p(Xt|Xt − 1)p(Ot|Xt)

1.1 DBNs and GMTK: training/testing this HMM

In the context of a DBN, the graph is defined arbitrarily over a sequence of length n wherein each
time (day in the weather example) instance is called a frame. When n is instantiated, i.e., we
oberve a particular sequence, the DBN is arbitrarily unrolled to fill all instances of the n sequence
samples. In our case, the DBN turns out to be an HMM. The prerequisite definitions for this graph
being defined for an arbitrary sequence are a graph which defines the first sample of any given
sequence (t = 0), and a arbitrary graph for t > 0.

In GMTK speak, the first frame is called the prologue, and defines what happens over the first

observed sequence sample. The following frame is called the chunk, and this is the workhorse of
the DBN. Essentially, the chunk is specified to unroll for the following 0 < t < n sequence samples.
Finally, the last frame is called the epilogue, and this details what happens in the final sample.
One can also imagine that the prologue, chunk, and epilogue can be defined for multiple frames,
and this would just amount to describing the dependencies over runs of your observed sequence.
The semantics will remain the same, in that the chunk is specified to unroll and essentially fill the
middle portion of a sequence. The prologue, chunk, and epilogue of the HMM are shown below.
Note that the epilogue is just a replica of the chunk. There is no restriction which says that the
epilogue need to be defined, and if you can recursively define the graph you are interested in without
this you are free to do so in GMTK.

X X

O O

Prologue Chunk

X

O

Epilogue

(a) HMM template in GMTK

X X

O O

Prologue Chunk

(b) Equivalent HMM templates in
GMTK

Figure 2: HMM templates in GMTK. The two are equivalent since in figure 2a, the chunk is the
same as the epilogue, so the chunk need only be unrolled over the last frame as is the case for the
template in figure 2b.

1.1.1 Graph structure definition

To define the structure of the graph in GMTK, we will create a structure file, hmm.str. The objects
described in this file will be the random variables of the graph. To describe the variables in the

prologue of the HMM in figure 2, the following is the gmtk syntax:

frame: 0 {

variable : X {

type : discrete hidden cardinality 3;

conditionalparents : nil using DenseCPT("pX");

}

variable : O {

type : discrete observed 0:0 cardinality 2;

conditionalparents : X(0) using DenseCPT("pO_given_X");

}

}

The frame for which we are describing variables is first defined, frame 0. Within this frame we have
two variables, X and O. There are 3 types of random variables in GMTK: discrete and hidden (i.e.,
random in which case we iterate over all values of the random variable during inference), discrete
and observed (these variables do not vary during inference, and we could further define them to be
deterministic or define a pdf which assigns a probability to their observed value), and real valued
and observed (described in Section 2). All hidden variables have cardinality C and it is assumed
that they take on values in the range [0, C − 1]. In frame 0, X(0) is discrete and hidden. Since
this is the first frame, X(0) has no parents, which is designated by conditonalparents : nil. The
marginal distribution over X is a DenseCPT called pX, the symantics of which will be described
in the next section.

O(0) is discrete and observed, as evidenced by the type declaration. The value that O(0) takes
on is fed into GMTK via what is called the global observation matrix. Basically, a file containing
the sequence of data is specified on the command line and loaded into memory. The syntax
0 : 0 designates a range in the global observation matrix. Corresponding to our binary sequence
(umbrella observations), the global observation matrix will consist of a single column, and each
row will correspond to each frame in the model. So, if we had a sequence 010, then the global

observation matrix would be

0
1
0

, the range specification 0 : 0 would associate each observation

to the first element of each row, ie O(0) = 0, O(1) = 1, and O(2) = 0. Finally, O(0) has a single
parent X(0), the conditional probability table (DenseCPT) of which is called pO given x. One
important thing to note is that the index of a random variable in a frame is relative only to its
local frame value; the designation X(0) says the value of random variable X in the current frame,
whereas X(−1) would say the value of the random variable X is the previous frame. This will
become more obvious when describing the next frame (the chunk) of the HMM.

To complete the HMM, we describe the chunk:

frame: 1 {

variable : X {

type : discrete hidden cardinality 3;

conditionalparents : X(-1) using DenseCPT("pX_given_X");

}

variable : O {

type : discrete observed 0:0 cardinality 2;

conditionalparents : X(0) using DenseCPT("pO_given_X");

}

}

chunk 1:1;

Many of the semantics are the same as we have seen for the prologue; we define random variables
associated with a particular frame and describe their conditional dependence relationships. The
line chunk 1 : 1 says the range of frames which are used for the chunk. Since we only have frame 1
which unrolls for the n− 1 last data sequences, 1 : 1 says to use frame 1 to arbitrarily unroll upon
all but the first observed data sequence. As previously mentioned, the designation of X(−1) as a
conditionalparent of X in this frame means that after the chunk has been unrolled, X0 will be a
parent of X1 corresponding to the prologue and the first unrolled chunk frame, X1 will be a parent
of X2 corresponding to the first and second unrolled chunk frames, and so on.

1.1.2 Trained parameter files: defining CPTs

There are several ways of representing probability distributions in GMTK. Real valued conditional
distributions will be covered in the sequel. The most natural way of specifying a discrete distibution
is via a table/matrix of probability values. This is called a DenseCPT in GMTK, the syntax of
which is as follows

number of DenseCPTs to follow

%notation for a CPT:

cpt_index

cpt_name

number of parents

cardinality of parents

cardinality of self

dense_cpt values

where % denotes a comment. First, we define the number of DenseCPTs to follow, say N . Moving
on to define a particular CPT, we begin by referring to that CPTs index (its in-file rank starting
from 0 and ending at N − 1). Next we define the name of the CPT, followed by the number
of parents of the random variable the CPT describes, followed by the cardinality of the random
variable’s parents, followed by the cardinality of the random variable itself, and finally the matrix
of probability values. For instance, the following would be the definition of all the HMM CPTs set
to uniform probability distributions.

% Dense CPTs

3

0

pX

0 % number parents

3 % cardinalities

0.33333333333 0.33333333333 0.33333333333

1

pX_given_X

1 % number parents

3 3 % cardinalities

0.33333333333 0.33333333333 0.33333333333

0.33333333333 0.33333333333 0.33333333333

0.33333333333 0.33333333333 0.33333333333

2

pO_given_X

1 % number parents

3 2 % cardinalities

0.5 0.5

0.5 0.5

0.5 0.5

1.2 GMTK training and testing

Two bash scripts, train cmd.sh and test cmd.sh, are included in the tarball and should be runnable
upon untarring. To run these, make sure the gmkt binary (or at least gmtkEMtrain and gmtkViterbi)
are in your path.

In order to infer the most probable assignment of the hidden layer to explain the observed layer
(called Viterbi decoding, wherein we calculate the configuration of hidden states which maximizes
the joint distribution, amongst all possible hidden configurations), we would first like to train our
data. GMTK features maximum estimation to learn both multinomial and Gaussian parameters
via the expectation-maximization (EM) algorithm [1]. To proceed with training our multinomial
distributions, one can specify a file of initial parameters for the distributions. In the accompanying
tarball, this file is init hmm.params and follows the semantics of the section describing CPTs.
Next, the binary gmtkEMtrain is called with various switches and parameters. To take a look at
this call, please see train cmd.sh. The switches and their definitions are:

strFile the the structure file

inputMasterFile the master file (empty for this example)

inputTrainableParameters file of initial CPT values

outputTrainableParameters file to write output CPT values

of1 observed file 1, file containing global list of sequences (one file per
sequence in ascii)

fmt1 format for observed file 1, ascii in our case

nf1 number of floats in observed file 1 (0)

ni1 number of ints in observed file 1 (1, umbrella/no umbrella)

dirichletPriors boolean, use or don’t use dirichlet priors (T is true)

maxE maximum number of EM iterations

lldp threshold at which to stop based on consecutive values between iterations

objsNotToTrain file listing CPTs not to train

random boolen, randomly initialize all values (T is true)

Once training completes, we’re ready to calculate the Viterbi assignment To do so, we’ll be using the
binary gmtkViterbi. The bash script which calls this binary is test cmd.sh. Many of the switches
are the same as those for gmtkEMtrain (and gmtk binaries in general). The switches which are
distinct and worth noting are:

verbosity integer value specification ranging from 0 to 99; output to terminal, ranges from showing
the log-likelihood probabilities (verb 10), to showing the instantiation of variables in
message-passing (verb 66), to the probability of variables in message-passing (verb 86),
and so on.

vitValsFile file to wrie the viterbi path to

All training and testing data are contained in the tarball subdirectory data, which also contains
the matlab script used to generate the data. The true labels are also included in the data directory,
both for the testing and training data. Running test cmd.sh will perform a verification of the
Viterbi assignment versus the ground truth labels. One should be able to achieve around 70%
accuracy with the current data generation.

2 Classifying the weather: real valued observations

As in section 1, you are curious about the weather wherein you work, which only happens to be
sunny, rainy, and foggy. However, your coworker no longer brings umbrellas to work. Instead, your
coworker utters a real number each day which is a noisy representative of that day’s temperature.
Our model of the weather now changes such that Ot ∈ R. Assuming this noise to be Gaussian,
we have that p(Ot|Xt = x) = N (µx, σ

2
x). Once more using an HMM, the graph of the model is

again that of Figure 2a. However, where previously our emission probabilities were discrete, they
are now Gaussian. The pertinent change in observation variable declaration is as follows (as seen
in file hmm gaussLeaves.str):

variable : O {

type : continuous observed 0:0;

conditionalparents : X(0) using mixture collection("pO_given_X")

mapping("internal:copyParent");

}

O declared as above for both the prologue and chunk. O(0) is defined as real valued and observed
(the only type of real valued/continuous variable supported in GMTK). Here, O(0) has a single
parent, X(0). Each Gaussian variable in GMTK is defined as a mixture of Gaussians, where
mixture collection refers to a collection of Gaussian mixtures (this may be thought of as an
array) corresponding to p(O(0)|X(0) = x). As |X| = 3, there must be 3 Gaussian mixtures in
the collection p0 given X. To make this more explicit, we’ll be using single dimensional Gaussians
p(O(0)|X(0) = x) = N (µx, σ

2
x) so that, when x = 1, p(O(0)|X(0) = 1) = N (µ1, σ

2
1) and so on for

x ∈ {2, 3}.

Now, define our collection of Gaussian mixtures to be the vector v with ith element v(i). Each
Gaussian in a mixture is referred to as a component, so that, for an arbitrary n-component mixture
M(µ, σ2, a) where µ = [µ(1), . . . , µ(n)]T , σ2 = [σ2(1), . . . , σ2(n)]T , and a = [a(1), . . . , a(n)]T we
have M(µ, σ2, a) =

∑n
i=1 a(i)N (µ(i), σ2(i)). Here, a is a vector of mixture coefficients (also known

as component responsibilities or Gaussian occupancies) such that
∑n

i=1 a(i) = 1, i.e., a is really a
distribution over the Gaussians in the mixture. For our example, we let n = 1, so that each mixture
simply consists of a single Gaussian. Thus, a is a scalar and a = 1. Note, however, that GMTK
supports arbitrary n values as well as learning for the Gaussian means, variances, and mixture
coefficients. Our vector of Gaussian mixtures is then v = [M(µ1, σ

2
1, 1),M(µ2, σ

2
2, 1),M(µ3, σ

2
3, 1)]T .

Our conditional distribution (emission distribution), then, is simply p(O(0)|X(0) = i) = v(i), for
i ∈ {1, 2, 3}.

The argument to mapping is a decision tree (DT) which defines a deterministic mapping based
on the parents of a random variable. The DT internal:copyParent defines an identity mapping
such that, when O(0)’s parent X(0) = i, we choose the ith Gaussian mixture in our vector of
mixtures v. Much more complicated deterministic mappings are possible, though this is outside
the scope of this document. It is worth noting, however, that deterministic functions of children
may be defined in GMTK using DTs; that is, for a random variable Y with parents π(Y), given a
configuration of Y ’s parents π(Y) = c, we may define a mapping such p(Y = y|π(Y) = c) = 1. DTs
in GMTK natively support complicated expressions of parent variables involving max, min, abs,
round, and basic arithmetic operators. Note that this provides a substantial amount of modeling
power as well as affording efficient inference as p(Y = y|π(Y) = c) = 1 so that we need not waste
compute considering other values π(Y) 6= c. For further information on DTs, please consult the
official GMTK documentation.

Note that if you desired a conditional distribution which did change based on the value of O(0)’s
parent variables, i.e., p(Ot|Xt = x) = p(Ot) = N (µ, σ2), it would suffice to exclude a mapping. In
such a case, the distribution over O(0) would be a single Gaussian for all time.

In GMTK, each Gaussian mean, variance, and mixture coefficient is defined in a separate data
structure. The Gaussian components are then comprised of these constituent units. Finally, Gaus-
sian collections are defined with elements of defined Gaussian components. We now describe each

of these in detail.

2.0.1 Gaussian means, variances, and mixture coefficients

The means, variances, and mixture coefficients all follow a similar type declaration syntax we’ve
previously seen for CPTs:

number of data instances to follow

data instance index

data instance name

data instance dimension

data instance values

The means, variances, and mixture coefficients are defined as follows in hmm gaussLeaves.mtr:

MEAN_IN_FILE inline

3

0

mean0 1 0.5

1

mean1 1 0.5

2

mean2 1 0.5

COVAR_IN_FILE inline

3

0

covar0 1 1.0

1

covar1 1 1.0

2

covar2 1 1.0

DPMF_IN_FILE inline

1

0

unityDPMF

1

1.0

The text MEAN IN FILE inline, COVAR IN FILE inline, and DPMF IN FILE inline are reserved
words notifying the GMTK parser that means, covariances, and DPMFs, respectively, are defined
following the command in the current file being read. These quantities may also be declared
separately in an external file. For instance, MEAN IN FILE means.txt ascii would specify to read
means from a file means.txt written in ascii. The file may then hold the definition of the vector
of 3 means defined above. The mixture coefficients are defined in terms of a Dense probability
mass function (DPMF) where we may reuse the same mixture coefficient, whose value is unity,
since we are only considering scalar Gaussians. When learning mixtures of Gaussians with n > 1,
one must be cautious of reusing mixture coefficients, as they may actually be quantities which

should be individually learned (i.e., declared differently). This will, of course, vary depending on
the application.

2.0.2 Gaussian components

Now that we’ve defined the basic Gaussian building blocks of means, variances, and mixture co-
efficients, we may define actual Gaussians in the form of Gaussian components (scalar Gaussians
herein). The syntax is:

number of components to follow

component index

component dimensionality

component type

component name

mean vector name

covariance vector name

Gaussian component syntax is fairly similar to what we’ve seen before. We begin by defining the
number of components to be defined, followed by the current component index. Now, different
from before, we first define the component dimensionality, then the component type, then the
component name. The component type may be one of the following: (0) defined by means and
covariance; (1) defined by means, covariance, and dlink structure (not covered). Finally, we the
mean and covariance names for this components. Note that the dimensionality of the mean vector
and covariace vector/matrix (vector for diagonal Gaussians) must be the same as the component
dimensionality. From hmm gaussLeaves.mtr, we have:

MC_IN_FILE inline

3

0

1

0

gc0 mean0 covar0

1

1

0

gc1 mean1 covar1

2

1

0

gc2 mean2 covar2

where the text MC IN FILE inline tells the GMTK parser that Gaussian mixture components are
to be subsequently defined.

2.0.3 Gaussian mixtures

Now we may define mixtures of Gaussian components. The syntax is:

number of componens to follow

mixture index

mixture dimensionality

mixture name

number of components in mixture

DPMF name

component names

From hmm gaussLeaves.mtr, we have:

MX_IN_FILE inline

3

0 1 mixture0 1 unityDPMF gc0

1 1 mixture1 1 unityDPMF gc1

2 1 mixture2 1 unityDPMF gc2

where, as we’ve similarly seen before, the text MX IN FILE inline tells the GMTK parser that
Gaussian mixtures are to be subsequently defined.

2.0.4 Gaussian collections

Finally, we are ready to build our collection of mixtures to model p(O(0)|X(0) = i) = v(i). The
syntax for a collection is:

number of collections to follow

collection index

collection name

collection dimensionality

mixture name per state

From hmm gaussLeaves.mtr, we have:

NAME_COLLECTION_IN_FILE inline

1

0

pO_given_X

3

mixture0

mixture1

mixture2

where, as we’ve similarly seen before, the text NAME COLLECTION IN FILE inline tells the GMTK
parser that Gaussian collections are to be subsequently defined.

2.1 Training Gaussian parameters

Now we are finally ready to train the model! The training script is available as train gaussLeaves.sh.
The options do not change from Section 1.1, save for defining the output to be -inputMasterFile

hmm gaussLeaves.mtr.

2.1.1 Testing Gaussian parameters

The test script is similar as before, available as test gaussLeaves.sh. Now, testing the above EM
trained Gaussian and multinomial parameters over 15000 test samples, we obtain:

Correctly identified 5000 of 15000 data points

This certainly seems much worse than the performance achieved when our observations were
boolean. Indeed, we’ve achieved accuracy no better than random. It turns out that with our
observations now being real valued, the model complexity has increased significantly. To effectively
train in the face of this increased complexity, we utilize labeled training data (described in Sec-
tion 2.2) wherein, for each observed sample, we know its true label. In this case, such training is
said to be supervised.

2.2 Supervised training

For the training data, assume that we not only have the observations, but we also have the correct
observation labels. In the case of the weather problem with real valued observations, this amounts
to a collection of days wherein your coworker not only gives you a noisy estimate of that days
weather, but also whether that day was sunny, rainy, or foggy. For such days, our hidden nodes
are actually observed, as seen in Figure 3. Such a model specifically designed for training is often
called a boot model, as this model is used to train the parameters of the model to be used for test
time. When doing Viterbi decoding, the test model is typically referred to as a decoder.

X X

O O

Prologue Chunk

Figure 3: HMM for supervised training.

As seen in hmm gaussLeaves train.str, our structure changes to

frame: 0 {

variable : X {

type : discrete observed 1:1 cardinality 3;

conditionalparents : nil using DenseCPT("pX");

}

variable : O {

type : continuous observed 0:0;

conditionalparents : X(0) using mixture collection("pO_given_X") mapping("internal:copyParent");

}

}

frame: 1 {

variable : X {

type : discrete observed 1:1 cardinality 3;

conditionalparents : X(-1) using DenseCPT("pX_given_X");

}

variable : O {

type : continuous observed 0:0;

conditionalparents : X(0) using mixture collection("pO_given_X") mapping("internal:copyParent");

}

}

so that X(0) is now observed. Note that the observation for X(0) is the second entry in the global
observation matrix. This is important since, in GMTK, real valued observations must come before
integer valued observations. The script train gaussLeaves.sh has the pertinent commands. To
train using the boot model, change BOOT=1 to BOOT=0 (line 4). The relevant changes between
train gaussLeaves.sh and our previous training script are listed below.

-of1 $TRAIN -fmt1 ascii -nf1 1 -ni1 0 \

-of2 $LABELS -fmt2 ascii -nf2 0 -ni2 1 \

These changes load the real valued observation file, variable TRAIN, first then the integer valued ob-
servation labels, variable LABELS. Thus, real valued observations occur first in the global observation
matrix, followed by the integer valued observations. Note that the current files include 1500 labelled
training instances. Testing with the resulting trained parameters, trained gaussLeaves.params,
using test gaussLeaves.sh results in

Correctly identified 10374 of 15000 data points

Thus, we achieve 69.16% accuracy, a substantial improvement from our earlier, unsupervised train-
ing.

2.2.1 Discriminative training via maximum mutual information estimation

GMTK supports discriminative training via maximum mutual information (MMI) estimation [2],
also called conditional maximum likelihood estimation. Such training has the potential to learn im-
proved parameters relative to generative training (such as EM). MMI estimation not only maximizes
the parameters with respect to the supervised log-likelihood (as is done in EM) but simultaneously

learns parameters which minimize the log-likehood of hypotheses not equal to the supervised labels
(i.e., a background set of “incorrect” labels). In practice, two models are necessary; the numer-
ator model, corresponding to the boot model, and the denominator model, corresponding to the
decoder. The relevant script is discTrain gaussLeaves.sh. Learning parameters using this script
and testing, we obtain

Correctly identified 10457 of 15000 data points

Thus, discriminative training results in 69.71% accuracy, a nice improvement.

In GMTK, the MMI objective is optimized using stochastic gradient ascent (SGA) [3]. Criti-
cal to effective discriminative training are the SGA learning rate parameters, listed below from
discTrain gaussLeaves.sh.

-updateMean T \

-updateCovar T \

-updateDPMF T \

-updateCPT F \

-useAdagrad F \

-covarLr 1.0e-6 \

-meanLr 1.0e-6 \

-initLr 1.0e-6 \

-useCovarDecayLr T \

-useMeanDecayLr T \

-useDecayLr T \

-decayCovarLrRate 1.0 \

-decayMeanLrRate 1.0 \

-decayLrRate 1.0 \

The -update switches specify whether means, covariances, DPMFs, or CPTs are learned. The
-covarLr, -meanLr, -initLr switches specify the learning rate for the Gaussian covariances,
Gaussian means, and all DPMFs/CPTs, respectively. The -useCovarDecayLr, -useMeanDecayLr,

-useDecayLr switches specify whether the learning rate decays in subsequent iterations as the opti-
mization proceeds. Finally, the -decayCovarLrRate, -decayMeanLrRate, -decayLrRate switches
specify the rate of decay where, defining a parameters initial learning rate as l and the decay rate
as r, the learning rate in iteration i will thus be l/ir.

2.2.2 Discriminative training with AdaGrad

Determining a good learning rate schedule for SGA is not a simple task. GMTK thus supports the
adaptive gradient algorithm, AdaGrad [4], wherein the learning rate is automatically adjusted in
subsequent iterations. When using AdaGrad, the only learning rate parameters which matter are
the initial learning rates. Enabling AdaGrad and setting the initial learning rate to the following:

-useAdagrad T \

-covarLr 1.0e-2 \

-meanLr 1.0e-2 \

-initLr 1.0e-2 \

we achieve the following performance after 3 iterations:

Correctly identified 10525 of 15000 data points

We now achieve 70.17% accuracy on the classification task of interest, further improving upon the
discriminative training results with decaying learning rates.

2.2.3 Discriminative training via deep neural networks

GMTK also supports supervised training of deep neural networks (DNNs)[5]. For our HMM, this
means the emission probabilities will change to that of a neural network whose weights and biases
are learned via backpropagation. The observations in the structure file change as follows (seen in
hmm dnn.str)

variable : O {

type : discrete observed value 1 cardinality 2;

conditionalparents : X(0) using DeepVirtualEvidenceCPT("deepVe");

}

The DNN using virtual evidence, wherein O(0) is called a virtual evidence child. A virtual evidence
child, in GMTK, has a single parent, has cardinality 2, and is observed to value 1. The virtual
evidence function governing the child, which is f(O(0), X(0)) = p(O(0) = 1|X(0) = x), may be
any non-negative function (even unnormalized, offering a large degree of modeling flexibility). The
virtual evidence function may thus be thought of as a weighting function for all hypotheses of the
virtual evidence parent (there must be only a single virtual evidence parent in GMTK) such that
the relative weight of a hypothesis X(0) = x plays the most critical factor during inference; that is,
for X(0) ∈ {x0, x1}, f(O(0), x0) > f(O(0), x1) favors hypotheses where X(0) = x0. The DNN itself
is declared by the DeepVirtualEvidenceCPT “deepVe”. A DeepVirtualEvidenceCPT in GMTK is
optimized for the possibly many matrix multiplies required of a feed forward pass during decoding.

The most significant changes in defining the DNN occurs in the master file, hmm dnn.mtr. First,
constants are included in the file hmm dnn.h via

#include "hmm_dnn.h"

Next, the matrices per layer, are defined:

DOUBLE_MAT_IN_FILE dnn ascii

The file dnn contains the matrices in ascii format. The matrix definition format is

number of matrices to follow

matrix index

matrix name

number of matrix rows

number of matrix columns

matrix values in raster order

Next, the DNN is defined infile as

DEEP_NN_IN_FILE inline 1

0

dnn % Deep NN name

NUMFEATURES

3 % cardinality of labels to be predicted

matrices:4 10 10 10 3

matrix0:g0 % name of double matrix (weights) for layer 0 (input layer)

squash0:rectlin % non-linearity for layer 0

matrix1:g1

squash1:rectlin % options are softmax, logistic, tanh, oddroot, linear, rectlin

matrix2:g2

squash2:rectlin

matrix3:g3 % output layer

squash3:softmax % ensure outputs sum to 1

END

Here we’ve defined a four layer network where the first layer, g0, is the input layer (the real valued
temperature observations, for our task at hand) consisting of 10 rectified linear neurons (10 observed
units). The remaining layers are the hidden units consisting of 10 rectified linear, 10 rectified linear,
and 3 softmax units. Note that, in the definition for the matrices in file dnn, each layer has an
extra column which corresponds to that layer’s bias. For instance, g0 has 10 rows corresponding
to the 10 input units and 2 columns, one for each neuron’s weight and the other for the bias.

Finally, the deep virtual evidence function defined as

DEEP_VE_CPT_IN_FILE inline 1

0 % CPT #

deepVe % CPT name

1 % # of parents (must be 1 for virtual evidence)

3 % parent cardinality (must = # NN outputs)

2 % self cardinality (must be 2 for virtual evidence)

dnn % name of deep NN that computes probabilities of parent

f_offset:0 % starting index in observation vector for input features

nfs:1 % # of input features to take from each frame

radius:RADIUS % use 2 * radius + 1 = 9 frames as NN input; t-r : t+r

END

The comments do well to describe the parameters. The radius parameter defines the number of
inputs, from the observation matrix, to concatenate together in the input layer. This is often
important for temporal signals where correlation exists between adjacent observations, such as
in a speech waveform. For our particular example, the sequence of inputs does not constitute a
wafeform, so the radius is defined to be 0 in hmm dnn.h.

We are now ready to train the network. The training script is train dnn.sh, where the pertinent
GMTK call being

RADIUS=0

NUMFEATURES=$((2*RADIUS+1))

gmtkDMLPtrain \

-of1 $TRAIN -fmt1 ascii -nf1 1 -ni1 0 \

-of2 $LABELS -fmt2 ascii -nf2 0 -ni2 1 \

-startSkip $RADIUS -endSkip $RADIUS -constantSpace T \

-trainingSched permute \

-inputMasterFile hmm_dnn.mtr \

-deepMLPName dnn -labelOffset 1 \

-featureOffset 0 -numFeatures $NUMFEATURES -radius $RADIUS \

-pretrainType AE -ptNumEpochs 0.2 -ptNumAnneal 0.1 -ptL2 1e-3 \

-bpNumEpochs 4415 -bpNumAnneal 0.15 -bpL2 1e-3 \

-outputMasterFile dnn.params \

-batchQueueSize 524300 -pretrainType none \

-bpInitStepSize 2.000000e-03 \

-ptMiniBatchSize 100 -bpMiniBatchSize 100 -allocateDenseCpts 2

The DNN is trained using stochastic gradient descent (SGD), the interpretation of which is almost
completely analogous to SGA (used in MMI). The parameter -bpNumEpochs defines the number of
training epochs and -bpMiniBatchSize the number of training instances to consider before taking
an SGD step within an epoch. Thus, setting -bpMiniBatchSize to 100 with 1500 training means
we consider 100 observations when computing a gradient and take 15 steps per each epoch. For
this example, we’ve turned off pretraining [6], though such parameters (beginning with pt) have
equivalent interpretations to their backpropagation counterparts (which begin with bp). The initial
learning rate is defined by -bpInitStepSize and follows a fixed annealing schedule following the
declaration of -bpNumAnneal. Training using train dnn.sh and testing using test dnn.sh, we
achieve the following performance:

Correctly identified 10535 of 15000 data points

so that we now achieve 70.23% accuracy on the classification task.

The accuracy for the various forms of training discussed herein are summarized in Table 1.

Table 1: Different training methods given 1500 labeled training instances, tested over 15000 instances.

Training procedure # correctly classified % correctly classified

EM (unlabeled) 5000 33.33

EM 10374 69.16

MMI (decaying lr, 3 iterations) 10457 69.71

MMI (adagrad, 3 iterations) 10525 70.17

DNN 10535 70.23

References

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via
the em algorithm,” Journal of the royal statistical society. Series B (methodological), pp. 1–38,
1977.

[2] D. Povey and P. C. Woodland, “Improved discriminative training techniques for large vocab-
ulary continuous speech recognition,” in Acoustics, Speech, and Signal Processing, 2001. Pro-
ceedings.(ICASSP’01). 2001 IEEE International Conference on, vol. 1, pp. 45–48, IEEE, 2001.

[3] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of the Trade,
pp. 421–436, Springer, 2012.

[4] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and
stochastic optimization,” The Journal of Machine Learning Research, vol. 12, pp. 2121–2159,
2011.

[5] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning.” Book in preparation for MIT
Press, 2015.

[6] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

	Classifying the weather: discrete observations
	DBNs and GMTK: training/testing this HMM
	Graph structure definition
	Trained parameter files: defining CPTs

	GMTK training and testing

	Classifying the weather: real valued observations
	Gaussian means, variances, and mixture coefficients
	Gaussian components
	Gaussian mixtures
	Gaussian collections

	Training Gaussian parameters
	Testing Gaussian parameters

	Supervised training
	Discriminative training via maximum mutual information estimation
	Discriminative training with AdaGrad
	Discriminative training via deep neural networks

