GPU-Accelerated Primal

Learning for Extremely
Fast Large-Scale
Classification

John Halloran and David Rocke
UC Davis

jthalloran@ucdavis.edu

j ¥ @convexDad
L @D jthalloran.bitbucket.io

Motivation

GPUs have become indispensable compute
tools for fast deep learning. However, GPU
speedups for many of the fastest ML
algorithms are nonexistent. As stated in the
scikit-learn documentation:

“Outside of neural networks, GPUs don't
play a large role in machine learning today,
and much larger gains in speed can often be
achieved by a careful choice of algorithms.”

Contrary to this common conception, we show
that GPUs effectively speed up extremely
intricate, fast machine learning algorithms.

GPU-Optimization Principles

Fast (intricate) ML algorithms contain many
sequential dependencies between CPU and
GPU variables, causing latency. Steps to
alleviate this problem:

1. Offload as much dependent computein a
sequence to the GPU.

. Calculate dependent compute early and
(async.) transfer ASAP.

. Conceal transfer latency using
iIndependent CPU compute.

. Sync variable transfers as late as possible.

Using careful GPU-optimization

principles, even CPU-centric ML

algorithms (e.g., those in scikit-

learn/LIBLINEAR) can enjoy huge

speedups.

Logistic Regression Speedups in LIBLINEAR

AN

-
Q
“+—
-
4]
[
O
-
©
D
@
O
)

O—=MNNWEALUO 0 W

16 24 32
Utilized threads

40

43

GPU opt. + CPU
multithreading

GPU opt.
CPU multithreading

Naive GPU

(Drop-in replacement)

SUSY dataset (5M instances)

Full paper

Faster Logistic Regression
in LIBLINEAR

Mix GPU and CPU for speed

Legend
GPU opt. + CPU GPU opt.

multith reading Naive GPU

CF w (Drop-in replacement)

CPU multithre
L—_—_1W

16 24 32 40 48 0 8 16 24 32 40 48
Utilized threads Utilized threads

a) real-sim (b) HIGGS

—

16 24 32 40 48 0 8 16 24 32 40 48
Utilized threads Utilized threads

(c) kddb (d) revi

—th

Speedup factor
C‘.:l N &~ O GO O M

SV AN

Speedup factor
.::;. N WAL O 00
O—=OWrONOo 0 W

Faster SVM Learning for
Massive-Scale Proteomics

Mix GPU and CPU to reduce GPU memory-use.

Legend
GPU opt. + CPU GPU opt.

multithreadin
- & Benchmark solver
CPU multithreadin Z (conjugate gradient)

&~ &) » ~

Speedup factor

— N w

Utilized threads

(a) Dataset of 23M data instances

Utilized threads

(b) Massive dataset of 215M data
instances, too large for GPU opt. solver

