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Graphical models (GMs) provide a flexible framework for modeling phenomena. In the past

few decades, GMs have become indispensable tools for machine learning and computational

biology. They afford a wide range of modeling granularity, from restricting only exact events

of interest to occur to allowing all possible events in a phenomenon’s event space. For all

such modeling considerations, GMs afford efficient algorithms to perform inference over the

probabilistic quantities of interest. In this thesis, we show how GMs may be leveraged to

improve both identification accuracy and search runtime of tandem mass (MS/MS) spectra.

For the majority of existing MS/MS scoring algorithms, we give equivalent GMs and show

how search time may be algorithmically improved. We present GMs for posterior based

(sum-product) and max-product inference which offer state-of-the-art performance and, most

importantly, are amenable to efficient parameter estimation. Furthermore, we show how a

GM which generatively models the stochastic process by which peptides produce MS/MS

spectra may be utilized to calculate features for improved classification between correctly

and incorrectly identified spectra, leading to significantly improved identification accuracy.
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Chapter 1

INTRODUCTION

A fundamental problem in biology and medicine is accurately identifying the proteins

present in a complex sample, such as a drop of blood. The solution to this problem has many

important applications, such as the early detection of diseases and congenital defects. For

instance, sickle-cell disease is caused by a single substitution in the amino acid sequence of

a protein found in humans [57], and the identification of this mutated protein can lead to

preventive care [71]. The only high-throughput method for solving this problem is tandem

mass spectrometry (MS/MS ), accomplishing in seconds what previously took hours using

methods such as Edman’s degradation [68].

Given a complex sample, an MS/MS experiment produces a collection of spectra typically

on the order of thousands, each of which represents a single peptide (protein subsequence)

that was present in the original sample. Fundamental to MS/MS is the ability to accurately

identify the peptide responsible for generating a particular spectrum, which we call the

spectrum identification problem. The most accurate methods for identifying MS/MS spectra

make use of a peptide database [68], typically derived from the mapped genome of the

organism of interest.

Given a peptide drawn from the database and an observed spectrum, database search

methods compare a theoretical spectrum of the peptide’s idealized fragmentation events to a

preprocessed observed spectrum. The spectrum identification problem is greatly complicated

by experimental noise, corresponding both to the presence of unexpected peaks (insertions)

and the absence of expected peaks (deletions) in the observed spectrum (displayed in Fig. 2.3).

In this work, we show the many ways graphical models may be utilized for the spectrum

identification problem. In the past few decades, graphical models have become a staple tool
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of machine learning and bioinformatics. For instance, the hidden Markov model has been

used to great success to model time series such as speech and genomics data in order to

perform inference, i.e., in order to answer queries of interest with regards to the modeled

data. Similarly, the models we use to solve the spectrum identification problem cast the

problem as inference in a time series, where “time” for some of these models is defined in

terms of the sequence of theoretical peaks and time for other models is defined in terms of

the sequence of observed spectrum peaks.

Much of this thesis focuses on two graphical models introduced for the sole purpose of

identifying tandem mass spectra (Chapter 6). In the first such model, Didea, the time series

being modeled is the sequence of characters in a peptide string (called amino acids). In

the second such model, DRIP, the time series being modeled is the sequence of observed

spectrum peaks, the theoretical spectrum is hidden, and insertions and deletions are explicitly

modeled. DRIP may be thought of as aligning the theoretical and observed spectra in a

manner similar to edit distance (i.e., string alignment). Importantly, both DRIP and Didea

allow efficient parameter estimation, where the learned parameters lead to improved search

accuracy (Chapter 8). This is in stark contrast to many existing scoring algorithms, which

do not support learning parameters but rather rely on hardcoded parameter values, often

selected by hand-tuning.

As we can already see based on their brief descriptions, DRIP and Didea differ significantly

from one another (in fact, their notions of time are inverted with respect to one another),

perhaps the most striking difference between DRIP and Didea being the use of the max-

product algorithm and the sum-product algorithm, respectively, to perform inference. These

two algorithms are the most common two instances of belief propagation (an umbrella of

algorithms for performing inference in graphical models, further discussed in Chapter 5.1)

and highlight two important distinctions between the two models: while both DRIP and

Didea identify tandem mass spectra well in practice, the most probable sequence of insertions

and deletions is calculated in DRIP to score peptides. As such, performing inference in DRIP

offers valuable information regarding a peptide given an observed spectrum. We utilize this
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auxiliary information to extract features which may be used to further improve identification

accuracy (Chapter 9).

While utilizing graphical models to improve search accuracy is a common thread in

this work, we also discuss how approximate inference in graphical models may be utilized

to algorithmically speed up identification of MS/MS data (Chapter 7). Importantly, we

show how many commonly used search algorithms (such as SEQUEST [20], X!Tandem [14],

Morpheus [73], and the base scores of MS-GF+ [44] and OMSSA [24]) may be represented as

graphical models and thus may also be algorithmically sped up. We provide timing results

for DRIP and SEQUEST’s XCorr, which provide up to a ten-fold speed improvement for

both low-resolution and high-resolution tandem mass spectra.
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Chapter 2

TANDEM MASS SPECTROMETRY

Proteins are strings of characters called amino acids. There are twenty amino acids,

each of which is identical save for their side-chains, depicted as the molecular group R in

Figure 2.1(a). The far left group H2N (called the amino group) denotes the beginning of

the amino acid, often referred to as the N-terminus. The far right group COOH (called the

carboxyl group) denotes the end of the amino acid and is often referred to as the C-terminus.

A substring of a protein is called a peptide or polypeptide, which consists of two or more

amino acids and which is typically, in practice, an order of magnitude shorter than its parent

protein.

Although we are typically interested in the protein content of a complex mixture, the

fundamental unit of observation in tandem mass spectrometry is the peptide, because peptides

are more amenable to liquid chromatography and mass spectrometry analysis. Thus, a typical

MS/MS experiment (Figure 2.2) begins by digesting the proteins into peptides using a

cleavage agent, such as the enzyme trypsin. The peptides are separately loaded into the mass

spectrometer via a process called liquid chromotography, wherein the digested proteins are

loaded into a thin glass column containing a solvent. The solvent separates peptides based

on chemical properties, such as hydrophobicity, and the peptides elute down the column at

different speeds. The peptides exit out of a thin tip at the end of the column, are vaporized

and ionized, and enter the mass spectrometer for the first round of mass spectrometry.

The first round of mass spectrometry, the MS1 phase, measures the mass-to-charge

ratio (m/z ) of the intact peptide (called the precursor m/z ). The intact peptide precursor

ions selected in the MS1 phase undergo a second round of mass spectrometry, typically

called the MS2 phase, wherein they are fragmented using one of various techniques (such as
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Figure 2.1: Amino acid and dipeptide. A dipeptide formed by a peptide bond between two

amino acids, during which process an OH is lost from the left amino acid’s C-terminus and

an H is lost from the right amino acid’s N-terminus (i.e., a water molecule is lost in total).
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Figure 2.2: A typical MS/MS experiment.
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collision-induced dissociation, the most commonly technique for peptide fragmentation) and

the m/z of the values of the resulting fragments are measured. Each of these fragment m/z

values is associated with an intensity value, which is roughly proportional to the number of

copies of that peptide fragment. Figure 2.3 displays a sample tandem mass spectrum, along

with the theoretical fragment ions (described below) of the generating peptide. A single unit

along the m/z axis is called a Thomson (Th), and the intensity y-axis is unitless but can be

seen as a measure of abundance or count.
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Figure 2.3: Real tandem mass spectrum, where the peptide responsible for generating the

spectrum is x = LWEPLLDVLVQTK, the precursor charge cs is 2. The b-ion peaks are

colored blue, y-ion peaks are colored red, spurious peaks are colored gray.

2.1 Database search

Let P be the set of all peptides and S be the set of all tandem mass spectra. Given an

observed spectrum s ∈ S with observed precursor m/z ms and precursor charge cs, our task

is to identify the peptide x from a given peptide database D ⊆ P that is responsible for

generating s. Any given mass spectrometry device is capable of isolating peptides with a

specified precision on the precursor m/z; therefore, we may constrain the search to only
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consider peptides with precursor m/z ±w of ms. The set of candidate peptides to be scored is

then

D(ms, cs,D, w) =

{
x : x ∈ D,

∣∣∣∣m(x)

cs
−ms

∣∣∣∣ ≤ w

}
, (2.1)

where m(x) is the calculated mass of peptide x. The goal of database search, then, is to

return the highest scoring candidate peptide

x∗ = argmax
x∈D(ms,cs,D,w)

ψ(x, s), (2.2)

where ψ : P× S → R is a function that assigns higher scores to higher quality matches and

the pair (x, S) is referred to as a peptide-spectrum match (PSM). The primary distinguishing

characteristic of any database search procedure is its choice of score function ψ.

2.2 Theoretical spectra

Many scoring functions work by comparing the observed spectrum to a theoretical spec-

trum that is derived from a candidate peptide using basic rules of biochemistry. Let

x ∈ D(ms, cs,D, w) be an arbitrary candidate peptide of length n and ñ = n− 1. Note that

x = x0x1 . . . xn−1 is a string of amino acids, i.e., characters in a dictionary of size 20. We use

the notation 0 : k to represent the set of integers {0, 1, . . . , k} and, for a sequence such as

x and for k ≤ n− 1, x0:k to denote the sequence x0:k = x0 . . . xk. Our goal is to produce a

theoretical spectrum vx containing the fragment m/z values that we expect x to produce.

We assume that the mass spectrometer employs collision-induced dissociation (CID), which

is the most widely employed method of peptide fragmentation. The model can be modified

in a straightforward fashion to accommodate other fragmentation modes.

The first type of fragment m/z value corresponds to prefixes or suffixes of the candidate

peptide, referred to respectively as b-ions and y-ions. These b- and y-ions are functions

b(·, ·, ·) and y(·, ·, ·), respectively, defined as:

b(x, cb, k) =

∑k−1
i=0 m(xi) + cb

cb
y(x, cy, k) =

∑ñ
i=ñ−km(xi) + 18 + cy

cy
. (2.3)



8

where cb and cy are charges related to the precursor charge state. Note that the whole peptide

mass is not considered. The b-ion offset corresponds to the mass of a cb charged hydrogen

atom, while the y-ion offset corresponds to the mass of a water molecule (18) plus a cy charged

hydrogen atom. When cs ∈ {1, 2}, cb and cy are unity because, for any b- and y-ion pair,

an ion with no charge is undetectable in the mass spectrometer and it is unlikely for both

charges in a +2 charged precursor ion to end up on a single fragment ion [45]. When cs ≥ 3,

we search both singly and doubly charged ions so that cb, cy ∈ {1, 2}.

As is common in the field, in the event that cs = 2, when there is also no ambiguity

as to the peptide being described, we also represent the b- and y-ion pairs as (bk, yn−k)

for k = 1, . . . , ñ, where the subscript denotes the number of amino acids utilized in the

ion computation. As an example, for peptide x = EALK and precursor charge cs = 2,

(b1, y3) = (b(E, 1, 1), y(ALK, 1, 1)) = (130, 331), where we’ve integerized the m/z values.

Denoting the number of unique b- and y-ions as nx and letting ñx = nx − 1, our theoretical

spectrum is thus a sorted vector vx = (v0, . . . , vñx) consisting of the unique b- and y-ions of x.

Figure 2.4 displays the theoretical spectrum for x = EALK, c(x) = 2, and Figure 2.3 displays

an observed spectrum with annotated b- and y-ions.

b3=b(EAL,1,3)
314

b2=b(EA,1,2)
201

y2=y(LK,1,2)
260

y3=y(ALK,1,3)
331

y1=y(K,1,1)
147

b1=b(E,1,1)
130

0

vx, x=EALK
cs=2

b-ion increment
y-ion increment
theoretical spectrum increment
bk,yn-k pairs

m/z

Figure 2.4: B- and y-ions of the peptide x = EALK assuming c(x) = 2 and integerized of the

fragment ions. Thus, cb = cy = 1 for k = 1, 2, 3.
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The second type of theoretical fragment ion corresponds to the loss of a molecular

group off of a b- or y-ion. Three types of losses are commonly encountered: loss of carbon

monoxide (CO), ammonia (NH3), or water (H2O). These molecules are lost from the side-

chain (Figure 2.1(a)) of the fragment ion so that we may determine when such losses may

occur based on the amino acids present in the fragment ion: CO may only be lost from a

b-ion; NH3 may only be lost if at least one aspartic acid (D), glutamic acid (E), serine (S),

or threonine (T) is present; H2O may only be lost if at least one glutamine (Q), lysine (K),

arginine (R), or asparagine (N) is present. In practice, the intensity of the neutral loss peaks

are typically much lower than the corresponding b- and y-ion peaks.

Some methods further add peaks adjacent (i.e., 1 Th away) to b-/y-ions and neutral

losses, which are commonly referred to as flanking peaks. Such flanking peaks were originally

used in the first database search method, SEQUEST [20], in order to account for imprecision

of m/z measurements. In practice, however, it has been observed that flanking peaks are

commonly detrimental to identification accuracy [65]. The various types of theoretical peaks

are summarized in Table 2.1.

Theoretical peak Formula

b-ion b(x, c, k) =
∑k−1
i=0 m(xi)+c

c

y-ion y(x, c, k) =
∑ñ
i=ñ−km(xi)+18+c

c

CO loss (a-ion) b(x, c, k)− 27.9949

H2O loss i− 18.0106 for b-/y-ion i if residue contains {Q,K,R,N}

NH3 loss i− 17.0266 for b-/y-ion i if residue contains {D,E, S,T}

flanking peak i− 1 Th for b-/y-ion or neutral loss i

Table 2.1: For peptide x = x0x1 . . . xn−1, k < n − 1, and charge c, the different types of

theoretical peaks commonly used in practice.
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2.3 Tandem mass spectra resolution

Technological advances in the past decade have allowed significant improvements in precision

when collecting tandem mass spectra. These precision improvements come in two forms,

the first being significantly more accurate estimation of a spectrum’s precursor mass and

charge during the MS1 phase, and the second being significantly more accurate estimation of

fragment ion locations in the MS2 phase. Datasets are typically characterized in terms of the

resolution used during the data acquisition process: spectra collected using low-resolution in

the MS1 phase and low-resolution in the MS2 phase are referred to as low-low (or LL) spectra,

spectra collected using high-resolution in the MS1 phase and low-resolution in the MS2 phase

are referred to as high-low (or HL) spectra, and spectra collected using high-resolution in

the MS1 phase and high-resolution in the MS2 phase are referred to as high-high (or HH)

spectra. While, in principle, it is possible to collect low-high spectra, this is uncommon in

practice and such spectra are not further discussed.

2.3.1 Implications for peptide identification

These resolution improvements have two significant impacts on peptide identification via

database search. The first such impact affects the candidate sets scored during a search,

without directly affecting PSM scoring functions. When high-low or high-high data are

collected, we may use a narrow precursor mass tolerance, w, when selecting peptide candidates

to score. Compared to low-low spectra, where w is often a few thomsons and the corresponding

number of candidates per spectra is typically on the order of hundreds to thousands, high-low

and high-high data often use w narrow enough that candidates range in at most dozens

per spectrum. This means that high-resolution MS1 data collection often equates to orders

of magnitude faster search time compared to its low-resolution counterpart. Furthermore,

beyond just faster search times, this also means that by scoring and ranking far fewer peptides,

the likelihood that a random peptide scores higher than the true peptide is lower (assuming

the true peptide is in the database). Thus, one would expect both faster and more accurate
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peptide identification to accompany high-resolution MS1 acquisition.

The second impact directly affects PSM scoring functions, without affecting the candidate

sets to be scored. When high-high data are collected, the measurement of fragment ion

locations are incredibly accurate. Search algorithms may take advantage of the increased

certainty in fragment ion locations by modeling their theoretical peaks with more certainty.

For most search algorithms, this means finer-grained quantization of the theoretical and

observed spectra. Where previously, for low-low and high-low data, the quantization bin-

widths were ∼ 1 Th, with high-high data the quantization bin-widths are often two orders of

magnitude smaller, ranging from anywhere between 0.02 Th to 0.05 Th (though these numbers

may change based on instrument and dataset). This directly impacts search accuracy, often

yielding significantly more identifications at stringent error tolerances.
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Chapter 3

PREVIOUS WORK

3.1 Scoring Functions

Many database search scoring functions have been proposed to identify peptides from an

MS/MS experiment. As previously mentioned, practically all such scoring functions share

the common thread of comparing a peptide’s theoretical spectrum to an observed spectrum.

In order to further improve a database search method’s identification accuracy, several post-

processing methods have been proposed which, accepting as input the PSMs of a database

search method, recalibrate PSM scores. We now discuss in further detail both scoring

functions and post-processors.

All mass spectrometry devices have a finite observable Th range. Let the maximum

observable Th range of the mass spectrometer be ō ∈ N. Many existing methods begin by

quantizing or fixed bin-width thresholding and preprocessing an observed spectrum s. For

the discussion that follows, let z ∈ Rō+1 be the vector resulting from preprocessing s and let

u ∈ Rō+1 be the theoretical vector based on the theoretical spectrum of a given candidate

peptide p (as described in Section 2.2).

3.1.1 SEQUEST’s XCorr

The very first database search algorithm for peptide identification, SEQUEST [20], remains

one of the most widely used tools in the field today. The elements of u correspond to

hardcoded weights for the integerized fragment ions (i.e., indices of u); b- and y-ions are

assigned weight 50, flanking peaks to b- and y-ions are assigned weight 25, and neutral losses

are assigned weight 10. In order to compare u and z, SEQUEST utilizes the following scoring
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function, called XCorr,

XCorr(s, x) = uT z − 1

75

75∑
τ=−75

uT zτ (3.1)

= uT (z − 1

75

75∑
τ=−75

zτ ) = uT z′. (3.2)

XCorr thus consists of a foreground term (dot-product) minus a background (cross-correlation),

where the background term is meant to penalize overfitting of the theoretical spectrum. By

the linearity of XCorr, the calculation z′ = (z − 1
75

∑75
τ=−75 zτ ) may be combined into the

SEQUEST preprocessing of s so that, caching z′ once per observed spectrum, scoring n

candidate peptides requires O(nō) operations given dense theoretical spectrum representations

and O(nm) operations given sparse theoretical spectrum representations, where m is the

maximal number of nonzero theoretical peaks amongst the n candidates to be scored. As

we’ll see in subsequent sections, the study and analysis of XCorr remains an active area of

research. XCorr is also closely related to log-likelihood of one of the graphical models heavily

studied in this work, Didea (discussed in Sections 6.2 and 6.2.5).

3.1.2 X!Tandem

X!Tandem [14] employs a dot product between a binary theoretical spectrum and and a

real-valued observed spectra. The resulting value is then multiplied by a factorial of the

number of matched b-ions as well as a factorial of the number of the matched y-ions, which

arise from assuming a hypergeometric distribution over fragment ion matches.

3.1.3 Parametrically calibrated scoring functions

Scoring functions often suffer from poor calibration, where PSM scores from different spectra

are difficult to compare to one another. Thus, although a scoring algorithm may perform

well ranking an observed spectrum’s generating peptide above all other database peptides

(the task of relative ranking), the scoring algorithm may perform poorly in terms of ranking

target PSMs above decoy PSMs from other spectra (discussed in futher detail in Chapter 4).
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As such, much recent work has focused on calibrating scoring functions by measuring the

significance of a particular PSM score with respect to some distribution of scores.

Original attempts at developing calibrated scoring functions focused on assuming par-

ticular scoring functions followed specific parametric forms, beginning with the Open Mass

Spectrometry Search Algorithm (OMSSA) [23]. OMSSA estimates p-values with respect

to the count of the b- and y-ions of x present in z (i.e., a dot-product between z and a

binary valued u) by fitting this count to a Poisson distribution with mean parameter derived

from the properties of the observed spectrum. For SEQUEST, several parametric calibration

methods have been proposed to calibrate XCorr scores. In [46], a Weibull distribution is fit

to the distribution of XCorr scores per observed spectrum and p-values are calculated for

top-scoring PSMs. More recent work, which we refer to as the XCorr E-value, has focused on

fitting an exponential distribution to the candidate peptide XCorr scores per spectrum [21].

3.1.4 Nonparametrically calibrated scoring functions: MS-GF+ and XCorr p-values

The MasS Generating Function (MS-GF+) [43, 44] algorithm was the first database search

algorithm to calculate exact, nonparametric p-values with respect to a base scoring function.

In MS-GF+, the observed spectrum is heavily preprocessed and the theoretical vector u is

Boolean valued. The base scoring function in MS-GF+ is then the dot-product uT z. This

dot-product is then calibrated by calculating its p-value with respect to the distribution of

scores for all peptides with equal precursor m/z ms,

MS-GF+(s, x) =
1

|Pms|
∑
α∈Pms

pD(α)1{uTαz ≥ uT z}, (3.3)

where Pms is the set of all possible peptides with equal precursor m/z (Pms = {α : m(α) =

ms, α ∈ P}), uα is the Boolean theoretical spectrum for α ∈ Pms , pD(·) is a distribution over

amino acids derived from the amino acid frequencies of the database D, and amino acids

are assumed i.i.d. such that pD(x) =
∏n−1

i=0 pD(xi). For arbitrary scoring functions, the exact

p-value calculation in Equation 3.3 is computationally expensive (i.e., without any structure

to exploit, we would have to score 20n peptides, assuming a maximum peptide length of
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n). However, the linearity of the underlying base scoring function allows Equation 3.3 to be

computed efficiently using dynamic programming.

Exact, nonparametric XCorr p-values

Exact, nonparametric p-values have also been computed for XCorr [33]. Like MS-GF+, the

exact distribution of peptide scores given an observed spectrum is calculated. The linearity

of XCorr, as seen in Equation 3.1, is exploited to compute p-values (as in Equation 3.3) via

dynamic programming. This approach makes no assumptions on the per spectrum distribution

of scores, and thus is less susceptible to inaccurate modeling of score distributions compared

to the parametric methods discussed in Section 3.1.3, at the cost of more computation;

parametric methods assume a closed form so that the overall complexity does not change

from scoring candidate peptides per observed spectrum using some scoring function, whereas

additional computation is necessary to calculate the dynamic programming matrix necessary

for exact nonparametric p-values. The exact details of the dynamic programming are now

discussed.

Special care must be taken so that the dynamic programming matrix may be exactly

computed. Specifically, the dynamic program must be written exclusively in terms of either the

sequence of b-ions or y-ions. We arbitrarily assume that the dynamic programming recurrence

is defined in terms of the b-ions. Ingeniously, as detailed in [33], given a precursor mass m

and assuming a precursor charge of 2+, for an integerized b-ion i, the sibling integerized y-ion

occurs at m− (i+ 1)− 18 = m− i− 19. The contribution of b-ion i’s sibling y-ion is then

added to z(i), adding another layer of preprocessing (the additional preprocessing compute

is neglible to total complexity). Note that, due to the assumption of a precursor mass and

the corresponding collapse of the sibling y-ion into the preprocessed observed spectrum,

this calibration must be run for each integerized precursor mass within the precursor mass

tolerance range. Furthermore, the contribution of b-ion i’s neutral losses (carbon monoxide,

ammonia, and water) are added to i, as well as all other higher charged related b-ions and

y-ions when the precursor charge is greater than 2+. At the end of this process, we have
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Algorithm 1 Compute the exact distribution of XCorr scores via dynamic programming.

1: Assume a given observed spectrum, s.

2: Let a+ and a− be upper bound and lower bounds, respectively, on XCorr(s, x) ∀ x ∈ P.

3: Assume a scoring function granularity of δ and precursor mass m.

4: Define r = da+−a−
δ
e.

5: Initialize the dynamic programming matrix A ∈ Rm+ ×Rr to all zeros.

6: Denote the set of amino acids as A.

7: for i = 1, . . . ,m do

8: for j = 1, . . . , r do

9: for α ∈ A do

10: A(i, j) = A(i−m(α), j − round(ẑ(i−m)/δ)) + 1;

11: end for

12: end for

13: end for

14: Initialize Z = 0. // Normalization constant

15: for j = 1, . . . , r do // Calculate normalization constant

16: Z+ = A(m, j);

17: end for

18: for j = 1, . . . , r do

19: A(m, j) = Z;

20: end for

21: Return A(m, :);
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a reprocessed observed vector ẑ and binary theoretical û with nonzero entries at charge 1+

b-ion indices, so that XCorr(s, x) = uT z′ = ûT ẑ. Defining b(x, 1, 0) = 1, from Equation 2.3

we have the recurrence

b(x, 1, k) =
k−1∑
i=0

m(xi) + 1 = m(xi) + b(x, 1, k − 1). (3.4)

We may then calculate the dynamic programming matrix and distribution of XCorr scores

(the last column in the dynamic programming matrix) for all x ∈ P using Algorithm 1. The

overall complexity of this process is O(mr|A|), where m is the precursor mass, r is the number

of bins for which scores are quantized, and A is the set of amino acids.

3.2 Recalibrating PSMs via post-processors

Far different from scoring functions (Section 3), post-processing methods accept as inputs

PSMs from a scoring function run over a dataset in order to recalibrate their scores for improved

identification accuracy. The first such post-processor, PeptideProphet [15, 8], recalibrated

scores via a linear discriminant function. Utilizing unlabeled target and decoy PSM scores,

PeptideProphet first computed linear discriminant scores for PSMs then recalibrates these

scores via a probability computed using the expectation-maximization algorithm [15, 8].

The calibration method was unsupervised. In MS/MS, supervision refers to utilizing labels

denoting whether a PSM is correct or incorrect. We may accurately assign negative labels

to decoy PSMs as we know no decoy could have generated an observed spectrum. Target

labels come with no such guarantess as we cannot, with certainty, say that a target PSM

generated an observed spectrum. Thus, in the case of semi-supervised training, target PSMs

are denoted as the positive class and decoy PSMs are denoted as the negative class.

Semi-supervised post-processing methods were subsequently shown to achieve superior

performance to the original PeptideProphet. The first such semi-supervised approach was

Percolator [38]. Given the output target and decoy PSMs of a scoring algorithm and several

features derived for each PSM (such features typically include charge, peptide mass, score,

as well as many others), Percolator utilizes a support vector machine (SVM) to learn a
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classifier between target PSMs and decoy PSMs. Critical to performance is identifying a

subset of target and with a stringent q-value threshold (typically 1%) and utilizing this set of

high-confidence target PSMs as well as all decoy PSMs to learn the support vectors. After

learning a classifier and identifying a high-confidence set of PSMs, this overall process is

repeated until the set of high-confidence PSMs does not change. Upon convergence, PSMs

are rescored based on their distance from the learned hyperplane. Subsequent work further

improved on the idea utilized in Percolator, utilizing neural networks with a specific loss

function (ramp loss) for improved target/decoy classification [66, 67]. Despite the increase in

accuracy afforded by these more recent works, Percolator remains one of the most popular

post-processors amongst the MS/MS community.

Recent work has focused on the manner in which the subset of high-confidence target and

decoy PSMs are used during training in Percolator [25]. To avoid overfitting, which is highly

probable if we do not separate the train and test sets, a nested cross-validation procedure is

introduced, wherein the set of all PSMs is split into three disjoint sets. Each split is further

split into three disjoint sets, where two of the sets are used to identify high-confidence PSMs

(i.e., use decoy labels to assign q-values) and the remaining set is used to test. This process is

iterated to convergence, and the resulting split PSMs are normalized and merged.

With Percolator being one of the most popular post-processors actively used, much

work has focused on its utilization with other popular scoring algorithm. In the original

paper, Percolator was described for use with XCorr and relevant features. Subsequent work

showed how Percolator and appropriate features may be used with Mascot for improved

Mascot accuracy [12]. Similar work was done to combine X!Tandem and Percolator [75].

Most recently, MS-GF+ PSMs and a carefully curated set of features were combined with

Percolator for improved identification accuracy [26].

We later show how graphical models may be used to extract features and further improve

Percolator post-processing performance for XCorr p-values and MS-GF+ (Section 9.1).



19

Chapter 4

ASSESSING PEPTIDE IDENTIFICATION ACCURACY

A significant challenge in evaluating the quality of a spectrum identification algorithm

is the absence of a “ground truth” data set where the generating spectrum is known for

each observed spectrum. We therefore follow the standard approach of using decoy peptides

(which in our case correspond to randomly shuffled versions of each real target peptide) to

estimate the number of incorrect identifications in a given set of identified spectra. In this

work, targets and decoys are scored separately and used to estimate the number of identified

matches at a particular false discovery rate (FDR), i.e., the fraction of spectra improperly

identified at a given significance threshold.

We estimate FDR using the target-only variant of target-decoy competition (T-TDC),

wherein the top-scoring target and decoy PSMs compete with one another and only the higher

scoring of the two is retained per spectrum. For a particular score threshold, t, FDR is then

calculated as the proportion of decoys scoring better than t to the number of targets scoring

better than t. In [40], it was proven that T-TDC is asymptotically accurate, as compared to

another commonly used MS/MS estimate of FDR [39], which was shown to underestimate

the true FDR. Because the FDR is not monotonic with respect to the underlying score, we

instead use the q-value, defined to be the minimum FDR threshold at which a given score is

deemed to be significant. Because datasets containing more than 10% incorrect identifications

are generally not practically useful, we only plot q-values in the range [0, 0.1].

4.1 Benchmark datasets

The yeast (Saccharomyces cerevisiae) and worm (C. elegans) data sets were collected using

tryptic digestion followed by acquisition using low-resolution precursor scans and low-resolution
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Table 4.1: Summary of presented datasets.

Data set Spectra Charges w

Worm-1 22,693 1–3 ±3.0 Th

Worm-2 21,862 1–3 ±3.0 Th

Worm-3 20,011 1–3 ±3.0 Th

Worm-4 23,697 1–3 ±3.0 Th

Yeast-1 35,236 1–3 ±3.0 Th

Yeast-2 37,641 1–3 ±3.0 Th

Yeast-3 35,414 1–3 ±3.0 Th

Yeast-4 35,467 1–3 ±3.0 Th

Malaria 12,594 2–6 ±50 ppm

fragment ions. Each dataset exhibited charge 1+, 2+, and 3+ spectra. Each search was

performed using a ±3.0 Th tolerance for selecting candidate peptides. Peptides were derived

from proteins using tryptic cleavage rules without proline suppression (i.e., cleave at arginine

or lysine irregardless of the presence of proline at the cleavage site) and allowing no missed

cleavages. A single fixed carbamidomethyl modification was included. Further details about

these data sets, along with the corresponding protein databases, may be found in [38].

The malaria (Plasmodium falciparum) sample was digested using Lys-C, labeled with

an isobaric tandem mass tag (TMT) relabeling agent, and collected using high-resolution

precursor scans and high-resolution fragment ions. The data set consists of 12,594 spectra

with charges ranging from 2+ through 6+. Searches were run using a 50 ppm tolerance for

selecting candidate peptides, a 0.03 Th fragment mass tolerance, a fixed carbamidomethyl

modification, a fixed TMT labeling modification of lysine and N-terminal amino acids. Further

details may be found in [74].

The relevant features of all datasets are summarized in Table 4.1.
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4.2 Benchmark algorithm settings

All XCorrs and XCorr p-values were collected using Crux v2.1.16567 [52]. XCorrs and XCorr

p-values were collected using tide-search with flanking peaks not allowed, resulting in the

best performance for each respective method. X!Tandem version 2013.09.01.1 was used, with

PSMs scored by E-value. MS-GF+ scores were collected using MS-GF+ version 9980, with

PSMs ranked by E-value. Default parameters were used (unless otherwise stated) except that,

to make a fair comparison with other methods, isotope peak errors were not allowed and, to

ensure the set of scored candidate peptides does not differ from other methods, methionine

clipping is turned off.

When searching the Malaria dataset, the following settings were used to take advantage

of the high-resolution fragment ions. XCorr utilized a fragment ion error tolerance of 0.03

(mz-bin-width=0.03) and initial fragment ion offset of 0.5 (mz-bin-offset=0.5). XCorr

p-values are currently not designed to take advantage of the increased fragment ion resolution

and so were collected with default settings. MS-GF+ was run with -inst 1, denoting a high

resolution fragment ion instrument. X!Tandem was run with fragment monoisotopic mass

error equal to 0.03 Daltons.

4.3 Benchmark performance

For a given method, we refer to measure of performance consisting of the number of identified

spectra at varying q-values as absolute ranking. The absolute ranking curves of MS-GF+,

XCorr p-values, XCorr, and X!Tandem (utilizing the search settings in Section 4.2) are plotted

in Figures 4.1 and 4.2 for all datasets described in Section 4.1.

All benchmarks are commonly used searched algorithms with free implementations avail-

able (XCorr, XCorr p-value, X!Tandem are even available as open source). The majority

of these search algorithms offer state-of-the-art performance and a valuable benchmark to

compare the accuracy of the new methods employing graphical models and described herein.

Details regarding the exact settings for each benchmark algorithm are available in Section 4.2
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and details regarding the presented datasets are available in Section 4.1.

From Figure 4.1, it is clear that the p-value methods MS-GF+ and XCorr p-value

significantly outperform the other benchmarks. This is a common thread in MS/MS scoring

functions; due to the nature of the target-decoy strategy for computing FDR, well calibrated

scoring functions often perform significantly better than uncalibrated scoring functions. This

is best exemplified in the difference in identified spectra for all q-values between uncalibrated

XCorr (in blue) and its calibrated counterpart XCorr p-value (in orange). Such performance

gains are the reason that much research in recent years has focused on calibrated MS/MS

scoring functions [43, 44, 33, 41]. However, the assumption necessary to calculate exact,

nonparametric p-values in MS-GF+ and XCorr p-value (seen in Equation 3.4) does not carry

over to high-resolution fragment ions, where typical quantization bin-widths are orders of

magnitude smaller than 1 Th, so that low-resolution fragment ions are assumed for XCorr

p-value and MS-GF+ for high-high data. In this regime, it is the case that these calibrated

methods may be outperformed by methods which capitalize on the high-resolution fragment

ions (Figure 4.2).

4.4 Practical considerations when benchmarking search algorithms

Critical to a fair comparison amongst different methods is that they score exactly the same

peptide candidates per spectrum. Special care must be taken when comparing MS/MS search

algorithms to one another as the (often unexpected) behavior of several search algorithms

makes an exact comparison (i.e., exactly same set of candidate peptides and observed spectrum

charges) difficult. While the following settings may not reflect the best settings for the many

available MS/MS scoring algorithms, they are necessary to ensure that performance is not

biased by information utilized in one scoring algorithm and not the others being compared.

Digestion rules are deterministic and thus should yield exactly the same behavior and

thus candidate peptides. However, some search algorithms implement non-standard digestion

rules. For instance, for a tryptic digest, MS-GF+ produces peptides both with and without

proline suppression. In contrast, all other search algorithms support trypsin digestion either
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Figure 4.1: MS-GF+, XCorr p-value, XCorr, and X!Tandem performance for the eight low-low

datasets.
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Figure 4.2: MS-GF+, XCorr p-value, XCorr, and X!Tandem for the high-high Malaria data.

with proline suppression or without, but not a mix of the two. In order to ensure the same

peptides are scored for all competitors, it is best to pre-digest the protein database and

construct a FASTA file of the digested peptides. This also means that, for a tryptic digest,

proline suppression must be ignored to ensure MS-GF+ adheres to the expected digestion

rules.

In practice, proteins with a leading methionine often see this amino acid clipped. As such,

all search algorithms should adhere to either clipping or not clipping a lead methionine. Note

that when methionine is clipped, both the clipped and unclipped peptide are typically added

to the peptide database. When using a pre-digested peptide database, methionine should

be clipped to guard against peptides which would not be considered in the original digested

database.

Observed spectra are assigned charge states, with some being assigned multiple charges

due to charge uncertainty during data acquisition. Some search algorithms, such as MS-GF+,

ignore observed charge information and instead assume, per spectrum, all allowable charges

specified for the search. In contrast, most search engines only search a spectrum with their

specified observed charge states. Modeling unobeserved charge states may lead to degraded

search accuracy, as the search engine is considering incorrect peptide candidates, increasing
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the chance of a random PSM outscoring valid peptides. To guard against this behavior, a

dataset may be split into several different files, each of which contains all spectra of a unique

charge (i.e., any spectrum with an observed 1+ charge). Each individual file may then be

run by specifying only its unique charge be searched. The separate charge searches may then

be merged to obtain the unbiased result.

Some search algorithms do not allow the specification of missed cleavages (such as MS-

GF+), they search possible missed cleavages and internally choose the best value suited for

their scoring function. This, of course, results in significantly different peptide candidate sets

than other search algorithms when searched with a specific number of missed cleavages. To

ensure that the candidate peptide sets are the same across all different search algorithms,

pre-digesting the protein database with either no missed cleavages or an infinite number of

missed cleavages is necessary.

Although all these procedures significantly complicate a typical search, they are absolutely

critical when benchmarking a new scoring function to ensure a fair comparison. Once again,

we note that these parameters are not reflective of the best settings for all scoring algorithms,

but are necessary to ensure an unbiased comparison amongst methods.
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Chapter 5

GRAPHICAL MODELS

5.1 Overview of Bayesian networks

Consider that you wish to model some phenomena such as the weather, the rise and fall of

stocks, or a speaker’s voice in order to perform inference, the task of answering queries of

interest in regards to the phenomena. However, due to either measurement error, incomplete

understanding of the phenomena, or a host of other factors, there is uncertainty with respect

to the phenomena’s behavior. We often build probabilistic models to account for such

uncertainty and perform probabilistic inference. As we’ll see, naive probabilistic inference

is often intractable, but probabilistic graphical models offer the potential to perform such

inference efficiently.

We motivate the need for efficient probablistic inference algorithms with the following

simple example. Assume that you have n discrete random variables X1, X2, . . . , Xn, with

joint distribution p(X1, X2, . . . , Xn). For simplicitly, assume that all random variables have

the same cardinality, r = |X1| = |X2| = · · · = |Xn|. Now, consider the problem of calculating

the marginal distribution of a single random variable, say Xn, which may be naively achieved

as follows

p(Xn) =
∑
x1

∑
x2

· · ·
∑
xn−1

p(X1, X2 = x2, X3 = x3, . . . , Xn = xn). (5.1)

To simplify notation, when it is unambigious we describe the probability of an event p(Xi = xi)

as p(xi) and a set of random variables as Xi:j = {Xi, Xi+1, . . . , Xj−1, Xj}, where i ≤ j. Now,

even in the case that r = 2 and all the random variables of interest are Bernoulli, Equation 5.1

would require O(2n) operations, a computation which is intractable for large n. However,

if there are conditional independences amongst the random variables, the computation in
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Equation 5.1 may be greatly simplified.

For instance, letting X0 = ∅, and for i = 1, . . . , n, if we knew that X0:i−1 and Xi+1:n were

conditionally independent given Xi (denoted as X0:i−1 ⊥⊥ Xi+1:n|Xi), then using basic rules

of probability, Equation 5.1 simplifies as

p(Xn) =
∑
x1

∑
x2

· · ·
∑
xn−1

p(x1, x2, x3, . . . , Xn)

=
∑
x1

∑
x2

· · ·
∑
xn−1

p(x1)p(x2|x1)p(x3|x2, x1) . . . p(Xn|xn−1, . . . , x1) by the chain rule

=
∑
x1

∑
x2

· · ·
∑
xn−1

p(x1)p(x2|x1) . . . p(Xn|xn−1) since X0:i−1 ⊥⊥ Xi+1:n|Xi (5.2)

=
∑
n−1

p(Xn|xn−1)
∑
n−2

p(Xn−1|xn−2) · · ·
∑
x3

p(x4|x3)
∑
x2

p(x3|x2)
∑
x1

p(x1)p(x2|x1).

(5.3)

Such a set of random variables, where X0:i−1 ⊥⊥ Xi+1:n|Xi, is known as a Markov chain.

We obtain 5.3 by rearranging 5.2 such that sums and the quantities which reference the

summands are pushed as far to the right as possible. Equation 5.3 requires O(nr2) operations,

and we’ve gone from a computation which grows exponentially in the number of random

variables to one which grows quadratically in r, all by exploiting conditional independence

amongst the random variables. Such exploitation of conditional independences for efficient

inference is formalized by probabilistic graphical models (PGMs), wherein a graph represents

the conditional independence properties (called Markov properties) amongst a set of random

variables. The graphical nature of PGMs affords one to visually build and intuitively

reason about a model, while providing a formal set of rules to determine the conditional

influence between random variables and perform efficient inference. Our discussion will focus

on Bayesian networks, wherein Markov properties are defined over directed acyclic graphs

(DAGs). For a description of Markov Random Fields, wherein Markov properties are defined

over undirected graphs, the reader is directed to [5, 49, 48].

A Bayesian network (BN) consists of a DAG G = (V,E), the vertices V of which corre-

spond to a set of random variables and the directed edges E of which correspond to possible
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(a) Length 3 Markov chain. (b) Naive Bayes model. (c) BN containing a v-structure.

Figure 5.1: Examples of Bayesian networks.

conditional dependencies in the graph. Directed edges are said to point from parent to child. A

BN encodes how the joint distribution of a set of random variables factorizes, i.e. decomposes

into a product of conditional distributions. The manner in which this factorization occurs

may be intuitively read from the BN, such that each factor involved in the overall product

is the probability of a random variable conditioned on its parents. For example, the joint

distribution of the length 3 Markov chain in Figure 5.1(a) factorizes as p(X1, X2, X3) =

p(X1)p(X2|X1)p(X3|X2), the joint distribution of the Naive Bayes model in Figure 5.1(b) fac-

torizes as p(X1, X2, X3, X4) = p(X1|X4)p(X2|X4)p(X3|X4)p(X4), and the joint distribution of

the BN in Figure 5.1(c) factorizes as p(X1, X2, X3, X4) = p(X1)p(X2)p(X3)p(X4|X1, X2, X3).

5.1.1 Conditional independence in Bayesian networks

One powerful feature of a BN is the ability to easily determine the influence random variables

have on one another. Conditional independence amongst a set of random variables may be

determined by inspecting the BN, the formal semantics of which are referred to as d-separation

and by which we determine the independence between variables conditioned on other variables

in the network. For example, for the Markov chain in Figure 5.1(a), all paths from X1 to X3

go through X2. If we condition on X2, i.e. if we know X2 with certainty, then X1 and X3

are conditionally independent, as no information could flow from X1 to X3. In this case, X2

acts as a separator for X1 and X3 and, conditioned on X2, X1 and X3 are independent and
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said to be d-separated. For the Naive Bayes model in Figure 5.1(b), X4 is a separator for

variables X1, X2, X3.

Figure 5.1(c) depicts a very important case in d-separation; notice that X1 and X2 both

have edges to a common child, X4, but do not have edges to one another, visually forming

a v. This is known as a v-structure, and in this case if we condition on X4, X1 and X2 are

conditionally dependent; if we do not condition on X4, X1 and X2 are independent. Note

the contrast between this and the network in Figure 5.1(b) which contains no v-structures;

for the BN in Figure 5.1(b), conditioning on X4 results in X1, X2, X3 all being conditionally

independent, and otherwise X1, X2, X3 are conditionally dependent. Thus, two variables are

d-separated in a BN if for each directed path from one variable to the other, the common

child in all v-structures are not conditioned on and at least one separator along the path is

conditioned on.

A set of random variables whose conditional independencies respect the Markov properties

of a BN are said to be an I-map (independence map), and a set of variables for which no

further Markov properties hold other than those of the BN is said to be a perfect map. As an

example, a set of independent random variables X1, X2, X3 are certainly an I-map for the

chain in Figure 5.1(a) since, for such random variables, it is true that X1 ⊥⊥ X3|X2, but these

variables do not form a perfect map as X1 ⊥⊥ X3|∅ is not a Markov property of the BN.

5.1.2 Inference in Bayesian networks

Marginalization by the elimination algorithm

As we saw in the length n Markov chain described in Equation 5.3, the factorization of the

joint distribution combined with rearranging and distributing the summations allowed us to

calculate p(Xn) in O(nr2) time. The algorithm underlying this set of operations is known

as variable elimination, the elimination algorithm, or simply eliminate, and may be used

to efficiently marginalize any number of variables in a PGM. Marginalization of a random

variable may be thought as eliminating this node from the graph, and the order in which we
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eliminate variables is known as an elimination ordering, where the random variable whose

marginal distribution we wish to obtain is not a part of this order(or placed last in the order

and not actually eliminated). It turns out that the algorithmic complexity in a BN is highly

dependent on the elimination ordering.

(a) Moralized length 3 Markov

chain.

(b) Moralized Naive Bayes

model.

(c) BN containing a v-structure,

moralized.

Figure 5.2: Moralized Bayesian networks from Figure 5.1.

We begin the elimination algorithm by moralizing the graph G = (V,E), such that the

parents of all child nodes share edges amongst each other and, subsequently, the directionality

of all edges is dropped. Thus, moralization forms cliques between child variables and all their

parents, where a clique is a fully connected subset of nodes V ′ ⊆ V . After moralization, we

obtain an undirected graph G = (V, E), where the set of vertices V remain unchanged from G.

The moralized graphs for the BNs in Figures 5.1(a), 5.1(b), 5.1(c) are displayed, respectively,

in Figures 5.2(a), 5.2(b), 5.2(c).

Next, for each variable in a given elimination ordering, we collect all factors which

reference that variable, then marginalize over this variable. The distribution resulting

from this marginalization is referred to as a message and is a function of a subset of the

remaining variables to be eliminated, the number of which determine the complexity of the

marginalization. Take as an example the length 5 Markov chain depicted in Figure 5.3(a)

and moralized in Figure 5.3(b), and assume the elimination ordering (X3, X4, X2, X1) for

which we are calculating p(X5). The resulting redistributed sums over the factorized joint
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distribution are then

p(X5) =
∑
x1

∑
x2

∑
x4

∑
x3

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(X5|x4)

=
∑
x1

p(x1)
∑
x2

p(x2|x1)
∑
x4

p(X5|x4)
∑
x3

p(x3|x2)p(x4|x3). (5.4)

Once calculated after each marginalization, each message is passed along to the next variable

to be eliminated and possibly joined to the product of factors for the next marginalization.

For arbitrary variables a, b, c, d, e, . . . , we denote these messages as µa→b(c, d, e, . . . ), where a

is the variable most recently eliminated, b is the next variable to be eliminated which recieves

the incoming message, and c, d, e, . . . are the variables for which this message is a function of

and have yet to be eliminated. Armed with this notation, we pick up where we left off in

Equation 5.4,

p(X5) =
∑
x1

p(x1)
∑
x2

p(x2|x1)
∑
x4

p(X5|x4)
∑
x3

p(x3|x2)p(x4|x3)

=
∑
x1

p(x1)
∑
x2

p(x2|x1)
∑
x4

p(X5|x4)µx3→x4(x2, x4)

=
∑
x1

p(x1)
∑
x2

p(x2|x1)µx4→x2(x2, X5)

=
∑
x1

p(x1)µx2→x1(x1, X5)

=µx1→x5(X5)

Note that the summations to compute messages µx3→x4(x2, x4), µx4→x2(x2, X5), µx2→x1(x1, x5)

are over 3-dimensional tables and will each require O(r3) operations. Already, we can see

that we went from quadratic complexity in r in Equation 5.3 now to cubic complexity in r.

Each step of elimination behaves as a manipulation of the induced graph over the yet-to-be

eliminated variables, such that variables which are not connected prior to eliminating a

variable but are involved in this variable’s marginalization afterwards share edges; indeed,

we view these variables as being “coupled” together as the resulting outgoing message is
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a function of all of them. Such extra edges are called fill-in edges and, after every step of

eliminate, we obtain a new graph over the remaining variables along with any additional

fill-in edges over these variables.

As an example, after computing µx3→x4(x2, x4), node x3 and all edges to and from this

node are removed. In the original graph G, X2 and X4 are not connected but are after

eliminating X3, and thus we have the resulting graph in Figure 5.3(c) where the fill-in

edges are colored in red. The graphs resulting from each step of the elimination ordering

(X3, X4, X2, X1) are displayed in Figures 5.3(c), 5.3(d), 5.3(e), 5.3(f).

(a) Length 5 Markov chain. (b) Moralized Markov chain.

(c) Eliminate X3. (d) Eliminate X4. (e) Eliminate X2. (f) Eliminate X1.

(g) Reconstituted graph G, with fill-in edges colored in

red.

Figure 5.3: Eliminate run on a length 5 Markov chain with elimination order (X3, X4, X2, X1).

The input Bayesian network, Figure 5.3(a), is first moralized, the output graph of which is

displayed in Figure 5.3(b). Figures 5.3(c), 5.3(d), 5.3(e), 5.3(f) show the resulting graphs

after each variable elimination, where fill-in edges are colored red. The reconstituted graph

corresponding to this elimination order is displayed in Figure 5.3(g).
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Denoting the set of fill-in edges as E ′, the reconstituted graph G ′ = (V, E ∪ E ′) is known as

the triangulated graph, and the manipulation of G to create G ′ (i.e. running eliminate) is known

as triangulation. Notice that in the triangulated graph in Figure 5.3(g), the fill in edges added

by eliminating variables X3, X4, and X2 result in the cliques {X2, X3, X4}, {X2, X4, X5}, and

{X1, X2, X5}, respectively, where each of these cliques are of size 3. It is no coincidence that

the summations to compute messages µx3→x4(x2, x4), µx4→x2(x2, X5), µx2→x1(x1, X5) require

O(r3) operations. Indeed, the maximum clique size in the triangulated graph dictates the

overall complexity of inference, and determining an elimination ordering which minimizes the

triangulated graph’s maximum clique size is necessary to optimize inference complexity.

Unfortunately, determining such an elimination ordering for general graphs turns out to be

NP-hard and heuristics are most often used [48, 34, 37]. While this is certainly disappointing

news, it turns out that if the moralized graph, G, is a tree, an optimal elimination ordering

(there may be many) corresponds to successively eliminating leaf variables. Such a strategy

results in no fill-in edges and, due to G being a tree, the maximum clique size being 2 and

overall inference complexity O(|V |r2). Such is the reason inference in the length n Markov

chain found in Equation 5.2 requiredO(nr2) operations, as the elimination order corresponding

to this regrouping of factors and redistribution of summations is (X1, X2, X3, . . . , Xn−1).

From eliminate to the sum-product algorithm

We’ve seen that eliminate may be run with an optimal elimination ordering if the moralized

graph is a tree. Correspondingly, we restrict our attention to trees in the current discussion,

coming back to the general case in Section 5.1.2. We’ve seen how eliminate may be used

to compute any marginal distribution in a BN. However, what if we were interested in all

marginal distributions in the BN? We could certainly run eliminate |V | times, once for

each variable in the network. Such a strategy has complexity O(|V |2r2) and proves to be

far from optimal; we can, in fact, calculate all marginals in O(|V |r2) time, the same as

eliminate! The algorithm for which we achieve this linear complexity in |V | is known as the

sum-product algorithm. We will be trading time for memory, as using eliminate to calculate a



34

single marginal requires O(|V |r2) time and O(r2) memory, whereas using the sum-product

algorithm to calculate all marginals requires O(|V |r2) time and O(|V |r2) memory.

1 2 3 n-1

Figure 5.4: Message passing in a Markov chain to compute p(Xn).

We can view eliminate as a message passing procedure where, given a tree, messages

flow from the leaves towards the last variable to be eliminated. Such a message passing

scheme used to compute p(Xn) in a moralized length n Markov chain is depicted in Figure 5.4,

where the index above a blue edge denotes the order in which a message is passed. Thus,

message µx1→x2(x2) is first passed, then µx2→x3(x3), and so on. In such a chain, it turns

out that the messages are recursively defined as µxi→xi+1
(xi+1) =

∑
xi
µxi−1→xi(xi)p(xi+1|xi).

The base case of this recursion is µx0→x1(x1) = p(x1), so that we have µxi→xi+1
(xi+1) =∑

xi
p(xi)p(xi+1|xi) = p(xi+1). Thus, after a single forward pass consisting of all messages

flowing up from the leaves, we can compute all marginals in a chain. However, for general

trees, this is not the case.

The sum-product algorithm begins by assigning an arbitrary node as the root in the

moralized tree G. To compute all marginals in G, we will need both a forward pass of messages

propagating from the leaves up to the root, as well as a backward-pass of messages flowing

from the root back down to the leaves. Computing a backward message is the same as

computing a forward message; to compute µxi→xj(xj), all factors involving xi are multiplied

together, along with all incoming messages save for µxj→xi(xi), and subsequently node xi is

marginalized. An alternate message formulation involves initializing all messages to unity,

multiplying all incoming messages and a division by µxj→xi(xi), though these two forms are

equivalent [48] and may be used accordingly based on implementation constraints.

However, for the marginals to be correct after these two passes, each node must adhere to

the message passing protocol (MPP), which states that a node only send messages once it has
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(a) BN whose moralized graph is

a tree.

(b) Moralized graph of the BN.
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(c) Root node is X5, MPP is respected.
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(d) Root node is X3, MPP is respected.
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(e) Root node is X5, MPP is violated.

Figure 5.5: Flow of messages in a BN whose moralized graph is a tree. The designated root

for messages in Figures 5.5(c) and 5.5(e) is X5, and the designated root for messages in

Figure 5.5(d) is X3. Thus, all forward messages, depicted by blue arrows, flow toward to the

root and all backward messages, depicted by red arrows, propagate from the root.
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received all of its incoming messages. Note that the MPP encapsulates the aforementioned

optimal flow of both forward and backward messages in a tree as, by the MPP, the leaves are

the only nodes which may send messages at the start of the algorithm and backward messages

may only be sent once all forward messages reach the root. It can be proven that if the

MPP is respected, then the marginals obtained once the forward and backward passes have

completed converge to the true marginals of the variables in the BN [48]. Figures 5.5(c) and

5.5(d) depict passed messages which respect the MPP. Figure 5.5(e) shows passed messages

for which the MPP is violated, as µx5→o5(o5) (message 9 in red) is passed before µo5→x5(x5)

(message 10 in blue) and µx1→x2(x2) is passed before µo1→x1(x1). The sum-product algorithm

requires computing twice the number of messages as variable elimination, and thus runs in

O(|V |r2) time. Furthermore, all these messages must be retained so that the sum-product

algorithm requires O(|V |r2) memory, whereas in variable elimination, we need only retain

the most recently computed message and thus eliminate requires only O(r2) memory.

The junction tree algorithm for general graphs

When G is not a tree, then the junction tree algorithm may be used. In this case, the graph

is first triangulated using the eliminatation procedure. A junction tree is then formed, where

nodes correspond to cliques in the triangulated graph and edges are shared between two

nodes if there is a non-empty interesection between the nodes’ corresponding cliques. The

sum-product algorithm is then run over the resulting junction tree and used to compute the

distributions over the cliques. For further details, the reader is directed to [5, 48].

The Viterbi algorithm

Variable elimination, the sum-product algorithm, and the junction-tree algorithm all fall under

the umbrella of algorithms which utilize message passing for inference in PGMs, and these

algorithms are collectively referred to as belief propagation (BP). The algebraic structures

which allowed us to derive these message passing algorithms were that sums and products are

both associative and commutative, and products are distributive over sums. The operations
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of sums and products together form a commutative semi-ring [22], and thusly the moniker

for the sum-product algorithm. It turns out that these message passing algorithms may

be used for any commutative semi-ring. One such semi-ring that is often encountered in

practice is max-product, which occurs when we wish to determine the configuration of random

variables which maximizes the joint probability in a BN, and the message passing algorithm

used to determine this configuration is known as the max-product or Viterbi algorithm. The

maximizing assignment of random variables computed via the Viterbi algorithm is referred to

as the Viterbi path or most probable explanation in the BN.

5.1.3 Dynamic Bayesian networks

Armed with our knowledge of BNs, we now focus our discussion on dynamic Bayesian networks

(DBNs), BNs for which the number of variables is allowed to vary. In keeping with the

notation in [5, 6], we begin all sequences with index 0. DBNs are most often used to model

sequential data, such as speech [6], biological [32], or economic [29] sequences. Each time

instance of the sequence is modeled by a frame, which consists of a set of random variables

and edges amongst these variables. A DBN is often defined in terms of a template where the

first frame is called the prologue, the final frame is called the epilogue, and the chunk consists

of multiple frames in between the prologue and epilogue. As an example, the template for

a hidden Markov model (HMM) is depicted in Figure 5.6(a), where t denotes the frame

index. The sequence of random variables X0, X1, . . . , Xn−1 are hidden, i.e. stochastic, and are

typically referred to as the hidden layer. The sequence of random variables O0, O1, . . . , On−1

are observed, i.e., each variable takes on a single value, and are typically referred to as the

observed layer or as evidence.

The observed layer is used to model a sequence of observations, most often measurements

or features derived from measurements of the signal of interest. The hidden layer is typically

used to model uncertainty with respect to the observed layer or the random process which

we do not have direct access to but from which we assume the observations to be produced.

These two ideas, the hidden layer and evidence, often underly DBNs and the algorithms



38

developed for them [5, 55].

When a length n sequence is to be modeled, the chunk is then unrolled, i.e., dynamically

expanded, to fill frames t = 1, . . . , n − 2, shown for our HMM in Figure 5.6(b). Thus, in

order to perform inference, we may simply expand the template, for which we produce a

single “wide” BN. After unrolling, we may then perform BP inference over the resulting

BN. However, the sequences typically modeled can be quite long. For instance, the number

of frames in speech signals is typically on the order of hundreds or thousands. As such,

highly optimized BP algorithms may be run specifically for DBNs, such as the forward and

backward recursions [5, 55] (also known as the α and β recursions, respectively), which allow

us to perform inference without first unrolling the graph but rather recursively computing

forward and backward messages, thus avoiding the memory overhead of the instantiated

unrolled graph. For extremely long sequences for which even the forward and backward

recursions do not provide enough memory savings to perform inference, as is the case in

genomic data [32] where the number of frames is typically on the order of millions, algorithms

exist which allow inference time to be traded for memory; these algorithms are the island [9]

and archipelagos [1] algorithms.

(a) Template for an HMM. (b) HMM unrolled.

Figure 5.6: Template for a hidden Markov model and the template unrolled.

As a concrete modeling example, assume we know nothing about the day-to-day state of

the weather being either sunny, rainy, or snowy, but we observe whether a particular coworker

brought an umbrella to work each day and that the weather does not change drastically
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day-to-day. We could model this using an HMM and infer the most likely state of the weather

for each day. Each frame would correspond to a day, our observations would be binary and

denote whether our coworker brought in an umbrella, and each Xi would be a multinomial

denoting one of 3 possible weather states. The conditional dependence between the Xi

and Xi+1 in the model encodes our knowledge that the weather cannot drastically change

between adjacent days. Once obtaining a sequence of observations, we could then use the

Viterbi algorithm to find the most likely sequence of weather states. Furthermore, given a

sequence of observations, we would also be able to learn all conditional probabilities in the

model, p(Xi+1|Xi) and p(Oi|Xi), in both unsupervised (i.e., without labelled observations)

and supervised settings via the expectation-maximization algorithm [15, 8].

5.2 Virtual Evidence

Virtual evidence [58, 2] is a versatile mechanism by which, given a BN, we may model the

conditional distributions of observed leaf nodes using nonnegative distributions which need

not be normalized for a great deal of probabilistic quantities commonly of interest. Formally,

for a BN G = (V,E) with edge set E and vertex set V , let O ⊆ V = {o1, . . . , on} be a set

of observed leaf nodes, and H = V \ O. For any S ⊆ V , denote the set of parents for all

variables in S as πS. The conditional distribution of oi ∈ O is then p(oi|πoi) =
ψi(oi,πoi )

Zi
, where

ψi : R|πoi |+1 → R+, Zi is a normalizing constant, and R+ is the set of nonnegative reals. The

joint distribution over G is thus

p(O,H) =p(O, πO)p(H|O, πO)

=p(H|O, πO)
n∏
i=1

p(oi|πoi)

=p(H|O, πO)
n∏
i=1

ψi(oi, πoi)

Zi

=
1

Z
p(H|O, πO)

n∏
i=1

ψi(oi, πoi), (5.5)

where Z =
∏n

i=1 Zi. Note that p(H|O, πO) may further factorize depending on the BN.
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We now show that, for many practical applications of interest, we do not need the

normalization constants Z1, . . . , Zn when computing the Viterbi path, the probability of

evidence, or posteriors of G. We define the following quantity, which will prove useful

throughout our discussion,

p′(O,H) =Zp(O,H) = p(H|O, πO)
n∏
i=1

ψi(oi, πoi).

Posterior probabilities

Consider the case where we are interested in posterior probabilities in G, i.e., for H ′ ⊆ H, we

would like to compute p(H ′|O). We thus have

p(H ′|O) =
p(H ′, O)

p(O)

=

∑
X∈H\H′

1
Z

p(H|O, πO)
∏n

i=1 ψi(oi, πoi)∑
X∈H

1
Z

p(H|O, πO)
∏n

i=1 ψi(oi, πoi)

=

∑
X∈H\H′ p(H|O, πO)

∏n
i=1 ψi(oi, πoi)∑

X∈H p(H|O, πO)
∏n

i=1 ψi(oi, πoi)

=

∑
X∈H\H′ p

′(O,H)∑
X∈H p′(O,H)

.

Thus, the normalization constants are not necessary to compute posteriors over the hidden

variables.

Probability of evidence and Viterbi score

The probability of evidence, or score, is the quantity computed after summing over all hidden

variables in G. It is often used to score different sets of observations. For instance, consider

that we have m sets of observations Oi = {oi1, . . . , oin} for i = 1, . . . ,m, where each of the

sets may contain observed information regarding a peptide, observed spectrum, or both.

Now, consider we’d like to score and rank each Oi, using G, as p(Oi) in order to choose

the maximum scoring set of observations O∗ = argmaxOi,i=1,...,m p(Oi). This is exactly the

scenario we have when performing an MS/MS database search for the model in Section 6.1.
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From Equation 5.5, we thus have

O∗ = argmax
Oi,i=1,...,m

p(Oi)

= argmax
Oi,i=1,...,m

∑
X∈H

1

Z
p(H|Oi, πO)

n∏
j=1

ψj(oj, πoj)

= argmax
Oi,i=1,...,m

1

Z

∑
X∈H

p(H|Oi, πOi)
n∏
j=1

ψj(oj, πoj)

= argmax
Oi,i=1,...,m

∑
X∈H

p′(O,H).

This is the case since p(Oi, H) ∝ p′(Oi, H) and, since Z is constant with respect to the

sum,
∑

X∈H p′(O,H) ∝
∑

X∈H p(O,H). Thus, we need not worry about the normalizing

constants Z1, . . . , Zn if we need only make decisions based on the relative scores between sets

of observations.

Now, instead of the probability of evidence, consider we would like to score each Oi with

their Viterbi score. We thus have

O∗ = argmax
Oi,i=1,...,m

max
X∈H

1

Z
p(H|Oi, πOi)

n∏
j=1

ψj(oj, πoj)

= argmax
Oi,i=1,...,m

1

Z
max
X∈H

p(H|Oi, πOi)
n∏
i=j

ψj(oj, πoj)

= argmax
Oi,i=1,...,m

max
X∈H

p′(Oi, H)

so that, once again, our ranking of each Oi based on Viterbi score does not depend on the

normalzing constants Z1, . . . , Zn.
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Viterbi path

Consider we’d like to compute the Viterbi path H∗ of G given O. We thus have

H∗ = argmax
X∈H

1

Z
p(H|O, πO)

n∏
i=1

ψi(oi, πoi)

= argmax
X∈H

p(H|O, πO)
n∏
i=1

ψi(oi, πoi)

= argmax
X∈H

p′(O,H).

Thus, computing the Viterbi path does not require the normalzing constants Z1, . . . , Zn.

Discussion

Virtual evidence allows a rich set of distributions to fit under the umbrella of graphical models.

We use virtual evidence in almost every DBN discussed herein, touching upon each one of the

probabilistic quantities discussed above. For Didea (Section 6.2), we utilize virtual evidence

to weight observed peaks, computing a posterior with which to score peptides. In Section 6.1,

we utilize a DBN employing virtual evidence to model any linear MS/MS scoring function to

score and rank peptides. For DRIP (Section 6.3), wherein we compute both Viterbi paths

and Viterbi scores, the conditional Gausian distribution over the observations is a form of

virtual evidence.
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Chapter 6

GRAPHICAL MODELS FOR PEPTIDE IDENTIFICATION

Armed with a firm understanding of GMs, in this section we show how many of the

scoring functions described in Section 3.1 may be represented utilizing GMs. One incredible

advantage of GMs is that, given a general purpose graphical models inference engine, such as

the Graphical Models ToolKit (GMTK) [3], we may rapidly develop and prototype widely

different models, without the need to rewrite and debug large quantities of code from scratch.

GMTK is a highly optimized software package which offers a rich set of variable modeling

options (including virtual evidence, conditional Gaussian/Gamma leaf nodes, and switching

parents [4]), supports both max-product and sum-product inference, and provides a wide

variety of approximate inference algorithms. Representing existing scoring algorithms as GMs,

we leverage approximate inference options in GMTK to significantly improve the runtime

of linear scoring functions (Section 7). We furthermore describe, as they were previously

introduced in the literature, two GMs, Didea and DRIP, designed for highly accurate MS/MS

spectrum identification.

In Didea, the time series being modeled is the sequence of a peptide’s amino acids (i.e.,

an amino acid is observed in each frame). The entire preprocessed observed spectrum is

observed in each frame. In successive frames, the sequence of b- and y-ions are computed and

used as indices into the preprocessed observed spectrum via Virtual Evidence (Section 5.2).

A single random variable, corresponding to the amount to shift the observed spectrum by, is

hidden in the first frame. Finally the posterior of the shift random variable being zero is used

to score each peptide candidate. This posterior is similar in form to XCorr (Equation 3.1),

consisting of a foreground score, which only involves the non-shifted observed spectrum,

minus a background score, which involves an average over shifted versions of the observed
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spectrum.

In DRIP, the time series being modeled is the sequence of observed spectrum peaks (i.e.,

each frame in DRIP corresponds to an observed peak). The entire theoretical spectrum is

hidden and traversed. Insertions (spurious peaks) and deletions (absent theoretical peaks)

are explicitly modeled via latent random variables in each frame. The Viterbi path of the

sequence of insertions and deletions is calculated and the corresponding Viterbi score (the

log-likelihood of the most probable configuration of hidden variables) is used to score a

peptide candidate. Thus, DRIP may be thought of as aligning the theoretical and observed

spectra in a manner similar to string alignment and edit distance.

Didea and DRIP differ significantly from one another (in fact, they are inverted in the

sequences that they model; sequence of a peptide’s amino acids versus the sequence of

observed peaks) with various strengths and weaknesses relative to one another. For instance,

performing Viterbi decoding in DRIP to score peptides returns a wealth of information

regarding each PSM, which we show may be used to derive features for improved Percolator

post-processing. Viterbi decoding is not an effective means to score peptides in Didea (the

only non-deterministic random variable in the model is the shift variable in the prologue).

Furthermore, while both models afford efficient parameter estimation (in stark constrast to

many existing scoring functions which do not allow or support effective parameter estimation

with most relying on hardcoded hyperparameters), learning parameters in DRIP lead to much

larger performance gains than in Didea. However, Didea has much more determinism than

DRIP and thus runs much faster in practice.

We begin our discussion with a relatively simple class of GMs, the log-likelihoods of which

correspond to MS/MS scoring functions linear in the theoretical and observed spectra. We

then make our way to the more involved Didea, also discussing its scoring function’s explicit

relationship to SEQUEST’s XCorr. We conclude with DRIP, arguably the most complicated

of any GMs discussed herein. However, unlike all other GMs and MS/MS scoring methods

discussed, DRIP does not quantize or fixed-width threshold the observed spectrum, instead

posing the alignment of theoretical and observed spectra as an inference problem. We note
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that all models (including the sophisticated DRIP model) were developed and tested using

GMTK for the diverse tasks of speeding up database search time and improving search

accuracy, illustrating the modeling power and generality afforded by casting problems as

inference in a GM. For the various models tested, the reader is provided specific GMTK

command lines to exhibit specific GM inference algorithms.

6.1 Linear scoring functions

(a) Mixture model represent-

ing linear scoring functions

(b) Mixture model represent-

ing linear scoring functions

with theoretical peak weights

Figure 6.1: Mixture models for linear scoring functions, utilizing plate notation where the

boxed random variables are repeated n frames. Shaded nodes denote observed variables.

Many MS/MS scoring functions are linear (XCorr, the base score for MS-GF+, X!Tandem).

Utilizing Virtual Evidence, we may represent any MS/MS linear scoring function as a mixture

model. Let u0, u1, . . . , un−1 be a sequence of theoretical peaks and s be a preprocessed

observed spectrum (a length m vector whose ith element is s(i− 1)). If we construct an equal

m length vector u which is non-zero at elements u0, u1, . . . , un−1, then many scoring functions

are small variants of uT s. Let ut be an observed random variables such that p(ut) = 1 and zt

be a virtual evidence child such that p(zt = 1|ui) ∝ es(ui). The log-likelihood of the mixture
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model in Figure 6.1(a) is then equivalent to uT s, since

p(u0, . . . , un−1, z0, . . . , zn−1) =
n−1∏
t=0

p(ut)p(zt|ut) =
n−1∏
t=0

p(zt|ut)

∝ exp(
n−1∑
t=0

s(ui)) = eu
T s,

where the use of Virtual Evidence allows us to ignore computing the constant of proportionality

(discussed in Section 5.2).

However, many of the MS/MS linear scoring functions weight the different types of

theoretical peaks with varying coefficients. For instance, in XCorr, b- and y-ions are assigned

weight 50, neutral losses are assigned weight 10, and flanking peaks are assigned weight 25.

For our sequence of theoretical peaks u0, u1, . . . , un−1, we may think of each peak as having

an associated weight w0, w1, . . . , wn−1 so that, constructing a new non-boolean vector û, we

have ûT s =
∑m−1

i=0 wis(ui). As such, we may incorporate these weights by ion type utilizing

the mixture model in Figure 6.1(b), where p(zt|ut, at) ∝ ewts(ut) and the likelihood is

p(u0, u1 . . . , a0, a1 . . . , z0, z1, . . . ) =
n−1∏
t=0

p(ut)p(at)p(zt|ut, at) =
n−1∏
t=0

p(zt|ut, at)

∝ exp(
n−1∑
t=0

wts(ut)) = exp(ûT s)).

As before, utilizing Virtual Evidence, we ignore the constant of proportionality during

inference, so that the log-likelihood of the mixture model is exactly the quantity that we are

interested in.

This relatively simple model illustrates the great deal of modeling power and flexibility

afforded using GMs. With a simple change in the observed spectrum preprocessing and

theoretical peak weights, using the GM in Figure 6.1(b) allows us to model any one of the

scoring functions for SEQUEST [20], X!Tandem [14], Morpheus [73], and the base scores of

MS-GF+ [44] and OMSSA [24]. Utilizing such a general representation, any work regarding

this GM generalizes, in principle, to any scoring function in the same class. For instance, in

Chapter 7, we significantly speed up XCorr utilizing the GM in Figure 6.1(b). Using the
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same techniques, we would expect similar speed-ups for other linear MS/MS scoring functions.

This also has a profound impact for parameter estimation. A majority of methods do not

afford learning parameters, but rather rely on hardcoded parameter values. Establishing

general training methods for the GM in Figure 6.1(b) means we may learn parameters for

the wide range of possible scoring functions. The effectiveness of this training will depend on

the model used, but any theoretical guarantess regarding the learned parameters will hold.

6.1.1 Exact, nonparametric p-values of linear scoring functions

In order to further illustrate the incredible modeling power afforded by GMs, we present a

DBN with which we can compute exact, nonparametric p-values with respect to the XCorr

scoring function and may be easily adapted for any linear scoring function. As in Algorithm 1,

assume a scoring function granularity of δ and precursor mass m. For a peptide x, we

overload m so that m(x) is the peptide’s mass. For a given observed spectrum s, assume

we’ve processed s to produce ẑ, as detailed in Section 3.1.4, so that for peptide x with boolean

vector of charge 1+ b-ions b, XCorr is XCorr(s, x) = bT ẑ.

The graph of the DBN is in Figure 6.2. Let Xi ∈ A be a uniformly distributed, random

amino acid for frames i = 0, . . . , n− 1. B0, . . . , Bn are random variables corresponding to all

possible b-ions for all peptides with precursor mass m, such that B0 = 1 and Bn = m + 1.

For i = 1, . . . , n − 1, p(Bi = bi−1 + m(xi−1)|Bi−1 = bi−1, Xi−1 = xi−1) = 1. Zi is a random

variable such that p(Zi = round(ẑ(bi)/δ)|Bi = bi, ẑ) = 1, i.e., it measures the current b-ion’s

contribution to the overall XCorr score. Given ẑ, the conditional distribution p(Zi|Bi, ẑ)

may be computed in O(|Bi|) time. Qi is a random variable which accumulates all score

contributions across all frames, such that Q0 = 0 and p(Qi = Qi−1 + Zi|Qi−1, Zi) = 1 for

i = 1, . . . , n.

Using this model, we efficiently consider all peptides with precursor mass equal to m. For

each peptide in the set, their sequence of b-ions is calculated. Each b-ion’s contribution to

the their peptide’s XCorr score is accessed via Zi and added to the total XCorr score up to

that frame, Qi. As a whole, we compute the set of possible XCorr scores for peptides with
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precursor mass m. Denoting the set of all vertices in the graph as V , the distribution over all

possible XCorr scores given the observed spectrum and precursor mass is then the posterior

p(Qn|s,m) =p(Qn|ẑ, m) =
∑
V \Qn

p(V |ẑ, m),

which may be efficiently computed using the junction tree algorithm. We may then easily

compute p-values
∑

q p(Qn = q|ẑ, m)1{q > XCorr(s,x)} for a peptide x such that m(x) = m.

Figure 6.2: DBN template for exact, nonparametric p-values of linear scoring functions.

Although we used the DBN in Figure 6.2 to compute exact, nonparametric p-values for

XCorr, p-values for any linear scoring function may be computed by simply changing the

preprocessing of the observed spectrum. Thus, we may use this DBN to compute p-values

for the other linear scoring functions mentioned in this work, X!Tandem [14], Morpheus [73],

the base score of OMSSA, and the base score of MS-GF+ (which thus correspond to

the p-values computed in MS-GF+, barring any unpublished tweaks in the closed source
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implementation). Utilizing this model opens such MS/MS linear scoring functions to the

wide breadth of algorithms and techniques accompanying graphical models. For instance, the

Viterbi algorithm may be used to determine the most probable peptide sequence given the

observed spectrum and precursor mass.

6.2 Didea

Didea [63] is a DBN based scoring function, each frame of which corresponds to one amino

acid from the candidate peptide sequence. The observed spectrum is preprocessed, quantized,

and observed in each frame. Let z ∈ Rō be the output of Didea’s preprocessing of s.

Didea’s scoring function is similar in form to XCorr. The b- and y-ions are calculated in

successive frames and used as indices into shifted versions of z. Random access to the

preprocessed observed spectrum is granted utilizing virtual evidence. A single hidden variable

in the first frame, corresponding to the number of units to shift z, is then marginalized in

order to compute a conditional log-likehood probability consisting of a foreground score and

background score(much like Equation 3.1), where the foreground score is the log-likelihood

of the model and the background score is the log of the denominator of the aforementioned

posterior. A single hyperparameter (λ in the discussion to follow), controlling the reweighting

of peak intensities was previously learned via grid search. We later detail how this parameter

may be efficiently learned in Section 8.2.

6.2.1 Log-likelihood

The graph of Didea is displayed in Figure 6.3. Let τt ∈ [−L,L] be an integer random variable

in frame t = 0, . . . , |x| − 1, such that τ0 is uniform and p(τt = τ0) = 1 for 0 < t ≤ ñ, where

ñ = |x| − 1. As with SEQUEST, denote zτt as the vector resulting from shifting z by τt

units. Let Cs ∈ {2, 3} be a uniform random variable modeling the possible precursor charges

(i.e., possible observed spectrum charges), and let C be a uniform random variable over the

set of possible b- charges for Cs. Thus, when Cs = 2, we have C ∈ {1}, and when Cs = 3,

we have C ∈ {1, 2}. The random variable C
′
t denotes a y-ion’s charge and, as discussed
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Figure 6.3: Graph of Didea. Black edges denote deterministic functions and blue edges

denote switching parents. Mt and M
′
t are the prefix and suffix masses, respectively, calculated

recursively in successive frames and used to calculate b- and y-ions in the chunk frames. The

entire preprocessed observed spectrum, z, is copied in each frame of the chunk. Note that, by

the defined recursion, Mnx = m(x) = M
′
0.
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in Section 2.2, is a deterministic function of the precursor and b-ion charges, such that

p(C
′
t = (cs − c)|Cs

t = cs, Ct = c) = 1.

Shaded variables are observed, i.e., take their values in each frame with probability 1, and

unshaded variables are hidden (random). The amino acids of a peptide are observed in each

frame after the prologue. The variable Mt successively accumulates the prefix masses of the

peptide, while the variable M
′
t successively accumulates the suffix masses of the peptide. Mt

and M
′
t are thusly used, along with the charge variables, to calculate the b- and y-ions of the

peptide in the chunk. The variable τ0 is hidden in the prologue and deterministically copied

by its descendents in successive frames, such that p(τt = τ |τ0 = τ) = 1 for t > 0. With τt and

the b- and y-ions as parents to z, shifted versions of the preprocessed spectrum intensities

are accessed.

For observed spectrum shift τ ∈ [−L,L], the log-likelihood of Didea is then

log p(τ0 = τ, x, z, Cs = cs) = log p(τ0 = τ)p(cs)p(x, z|τ0 = τ, cs)

= log p(τ0 = τ) + log p(cs) + log p(x, z|τ0 = τ, cs)

= − log |τ0| − log |Cs|+ log
ñ∏
t=1

(cs−1∏
c=1

p(c)zτ (b(x0:t−1, c))zτ (yt:ñ, c
s − c)

)
= − log |τ0| − log |Cs|+ log

ñ∏
t=1

(cs−1∏
c=1

p(c)zτ (b(x0:t−1, c))zτ (yt:ñ, c)
)

= − log |τ0| − log |Cs|+
ñ∑
t=1

(cs−1∑
c=1

(log p(c) + log zτ (b(x0:t−1, c) + log zτ (y(xt:ñ, c))
)

(6.1)

Note that when Cs = 2, p(C = 1) = 1 and Equation 6.1 simplifies to

log p(τ0 = τ, x, z, Cs = 2) = − log |τ0| − log |Cs|+
ñ∑
t=1

(
log zτ (b(x0:t−1, 1) + log zτ (y(xt:ñ, 1))

)
,

(6.2)

where the sum involves the logarithms of the binned, reweighted observed peaks accessed

by the b- and y-ions of x. Thus, the behavior of Didea changes depending on the precursor

charge Cs, in that when Cs = 2, C is deterministic, but when Cs = 3, C is a random variable.



52

6.2.2 Scoring function under assumed precursor charge

Assuming precursor charge cs, Didea computes a conditional log-likelihood

Dideacs(s, x) = log p(τ0 = 0|x, z, Cs = cs) = log p(τ0 = 0, x, z, Cs = cs)− log p(x, z, Cs = cs)

= log p(τ0 = 0, x, z, cs)− log
L∑

τ=−L

p(τ0 = τ, x, z, cs)

= log p(τ0 = 0, x, z, cs)− log
L∑

τ=−L

p(τ0 = τ)p(x, zτ |τ0 = τ, cs)

= log p(τ0 = 0, x, z, cs)− log
1

|τ0|

L∑
τ=−L

p(x, zτ |τ0 = τ, cs). (6.3)

As previously mentioned, Dideacs(s, x) is a foreground score minus a background score, where

the background score consists of averaging over |τ0| shifted versions of the foreground score,

much like SEQUEST’s XCorr. Thus, Didea may be thought of as a probabilistic analogue

of SEQUEST. As this scoring function is a posterior probability, this quantity is readily

computable, given Didea’s definition in Figure 6.3, by sum-product inference in GMTK,

supported by the junction tree algorithm (an example command line of computing Didea’s

scoring function in GMTK is given in Appendix A.1). By defining Didea in GMTK, this allows

one to alter the GM without requiring significant code redevelopment and the subsequent

debugging time which would follow. This point is especially pertinent as we next discuss a

significant alteration to the behavior of Didea (Section 6.2.3).

6.2.3 Integrating over precursor charge states

MS/MS spectra are commonly assigned multiple charge states, resulting from uncertainty

of the precursor charges during data collection. Multiply charged observed spectra result in

multiple peptide candidate sets, partitioned by charge, in which case we have a top-ranking

PSM for each charge candidate set. Since only a single peptide generated the observed

spectrum, it is the job of the scoring algorithm to decide which peptide this is amongst the

top-ranking charge PSMs. This job is made difficult by the fact that charge 2 theoretical
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spectra contain only singly charged peaks whereas charge 3 theoretical spectra contain

both singly and doubly charged peaks, so that a charge 3 theoretical spectrum is denser

with theoretical peaks than its charge 2 counterpart. Thus, scoring functions which are

monotonically increasing in the number of theoretical peaks will assign a higher score to a

charge 3 PSM than a charge 2 PSM.

In order to make PSM scores comparable between differently charged candidate sets,

Didea integrates over the precursor charge states, {2, 3}, regardless of the observed precursor

charge. That is to say, Didea assumes that Cs ∈ {2, 3} and marginalizes over this variable.

Didea’s scoring function to score charge varying spectra is thus

Didea(s, x) = log p(τ0 = 0|x, z) = log
3∑

cs=2

p(τ0 = 0, x, z, cs)− log
3∑

cs=2

p(x, z, cs)

= log
3∑

cs=2

p(τ0 = 0, x, z, cs)− log
1

|τ0|

3∑
cs=2

L∑
τ=−L

p(x, zτ |τ0 = τ, cs). (6.4)

6.2.4 Didea Search Accuracy

Didea is benchmarked against MS-GF+, XCorr, XCorr p-value, and X!Tandem using eight

datasets collected using low-resolution MS1 and MS2 scans. Dataset descriptions may be

found in Section 4.1 and search algorithm parameters are discussed in Section 4.2. As seen

in Figure 6.4, Didea significantly improves performance relative to all methods across all

datasets.

6.2.5 Didea’s Relationship to XCorr

In [63], the design of Didea’s log-posterior scoring function drew inspiration from XCorr. This

is most obviously seen in Equations 6.3 and 6.4, where, as previously noted, Didea’s scoring

function is similar in form to XCorr; both consist of foreground scores, which only consider

the non-shifted observed spectrum, minus background scores, which consist of an average over

shifted versions of the observed spectrum. In [63], much of Didea’s performance is attributed

to its log-posterior’s similarities to XCorr. Herein, we show the explicit relationship between
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Figure 6.4: Didea performance for eight datasets.
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these two scoring functions, proving that Didea’s scoring function is upper bounded by XCorr.

From Equation 6.3, we have

Didea(s, x) = log p(x, z|τ0 = 0)p(τ0 = 0)− log
∑
τ∈T

p(τ0 = τ)p(x, zτ |τ0 = τ)

= log p(x, z|τ0 = 0)p(τ0 = 0)− logEτ [p(x, zτ |τ0 = τ)]

where marginalization over τ is equivalent to an expectation. The negative of the logarithm

is convex, so by Jensen’s inequality, we have

Didea(s, x) ≤ log p(x, z|τ0 = 0)p(τ0 = 0)− Eτ [log p(x, zτ |τ0 = τ)]. (6.5)

Let g(s, x) = log p(x, z|τ0 = 0)p(τ0 = 0)− Eτ [log p(x, zτ |τ0 = τ)]. We thus have

g(s, x) = log p(x, z|τ0 = 0)
1

|T |
− Eτ [log p(x, zτ |τ0 = τ)]

= − log |T |+ (b+ y)T z′ −
∑
τ∈T

p(τ0 = 0) log exp [(b+ y)T z′τ ]

= − log |T |+ (b+ y)T z′ − 1

|T |
∑
τ∈T

(b+ y)T z′τ . (6.6)

Note that if we write u = b+ y, we have

g(s, x) = − log |T |+ uT z′ − 1

|T |
∑
τ∈T

uT z′τ

= − log |T |+ uT (z′ − 1

|T |
∑
τ∈T

z′τ )

so that

Didea(s, x) ≤ − log |T |+ uT (z′ − 1

|T |
∑
τ∈T

z′τ ). (6.7)

Thus, not only can Didea be thought of as a probabilistic analogue of SEQUEST, but Didea’s

scoring function is upper bounded by a function equvialent to XCorr plus a constant. This

upper bound holds with equality when the random variable in the expectation is deterministic

(i.e., p(x, zτ |τ0 = τ) is the same for all τ ∈ T ). Further upper and lower bounds for Didea’s

scoring function are provided in Appendix B.
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6.2.6 Implications of Didea’s upper bound

Didea’s log-posterior, Didea(s, x), is highly nonlinear and does not lend itself to a simple

recursion with which to apply dynamic programming in order to compute p-value quantities

over the universe of candidate peptides (as done in MS-GF+ and XCorr p-values, described

in detail in Section 3.1.4). However, g(s, x) is linear and we may compute p-values for it

efficiently exactly as is done in XCorr (as described by Algorithm 1).

Further study of Didea’s upper bound, for which we may efficiently compute exact p-values

of, may allow us to approximate p-values for the original Didea scoring function itself. A

variational approach may be taken, wherein a distribution of interest (which is typically

infeasible to compute in practice) is approximated via a simpler auxiliary function which

may be tractably computed. Critical to this strategy is that the auxiliary function bound the

distribution of interest, so that minimizing the auxiliary function (when it is an upper bound)

with respect to user defined free parameters leads to an accurate estimate of the distribution

of interest. Bounds on Didea’s scoring function provide future avenues to approximate

p-values for this complicated scoring function. Specifically, we may parameterize g(s, x) and

minimize with respect to these parameters to gain a linear function which well approximates

Didea’s scoring function and for which p-values may be efficiently computed, as described in

Section 3.1.4.

6.3 DBN for Rapid Identification of Peptides (DRIP)

The temporal sequence modeled in DRIP is the observed spectrum, where each frame of

the model corresponds to a single observed peak. Denote the number of frames as ns and

let ñs = ns − 1 and t be an aribtrary frame 0 ≤ t ≤ ñs. The theoretical spectrum, whose

variables are grouped together in the top light blue portion of Figure 6.5, is hidden and

traversed from left to right as follows. Kt−1 denotes the index of the current theoretical peak

in frame t− 1 while δt is a multinomial random random variable which denotes the number
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Theoretical 
Spectrum
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Figure 6.5: Template of DRIP. Shaded nodes represent observed variables while unshaded

nodes represent hidden variables. Black edges correspond to deterministic functions of parent

variables, red edges correspond to conditional Gaussian distributions, and blue edges represent

switching parent functionality where the parent nodes are known as switching parents such

that the parents and thus conditional distributions of their children may change given the

value of switching parents.
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of theoretical peaks we move down in the subsequent frame, i.e.,

p(K0 = δ0|δ0) = 1, p(Kt = Kt−1 + δt|Kt−1, δt) = 1, t > 0. (6.8)

Correspondingly, vx(Kt) is the Ktth theoretical peak. Note that a deletion thus occurs

when δ0 > 0 and δt > 1 for t > 0, i.e., the hypotheses such that one or more theoretical

peaks are not accessed, where a hypothesis is an assignment of all random variables in the

graph. The number of deletions occuring in a single frame is then δ0 for the prologue and

(δt − 1)1{δt > 1} for all subsequent frames. In order to discourage the use of deletions unless

absolutely necessary, the distribution over δt is constrained to be monotone decreasing. The

parents of δt, ñ
x and Kt−1, constrain it from being larger than the number of remaining

theoretical peaks left to traverse, i.e.,

p(δ0 > ñx|ñx) = 0, p(δ0 > ñx −Kt−1|ñx, Kt−1) t > 0.

6.3.1 Scoring observed peaks

Variables modeling the observed spectrum are grouped together in the bottom light red

portion of Figure 6.5. The variables Omz
t and Oin

t are the observed m/z and intensity values,

respectively, of the tth observed peak, so that as t increases we move further down the m/z

axis of the observed spectrum. The m/z observation is scored by a Gaussian centered near the

theoretical peak accessed in a frame and the intensity observation is scored using a Gaussian

with mean greater than or equal to the most intense peak value. In this manner, DRIP aligns

the theoretical and observed spectra by penalizing observed peaks far from theoretical peaks

and penalizing peaks with intensity less than unity. The variable it, parent to both Omz
t and

Oin
t , is a Bernoulli random variable denoting whether the tth observed peak is an insertion,

it = 1, or not. When it = 0, the observations are scored as

p(Omz
t |vx(Kt), it = 0) ∼ N (µmz(vx(Kt)), σ

2), p(Oin
t |µin, it = 1) ∼ N (µin, σ̄2),

where µin and σ̄2 are the mean and variance of the Gaussian used to score peak intensities,

σ2 is the variance of the Gaussian used to score m/z observations, and µmz is a vector of
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means such that an arbitrary theoretical peak j scores m/z observations using N (µmz(j), σ2).

The theoretical peaks serve as indices into a vector of Gaussians, each such Gaussian having

equal variance and centered at a unique m/z position (illustrated in Figure 6.6). Thus, when

describing a theoretical peak as scoring an observed peak, we are referring to scoring using

the Gaussian accessed by the theoretical peak. To avoid confusion, we refer to the Gaussian

accessed by a theoretical peak as the theoretical Gaussian peak.

In
te

n
si

ty
 

m/z 

m/z 

  y-ion 
  b-ion 

  insertion 

 

 

vx 

s 

μ mz(130)=130.9 μ mz(147)=146.8 μ mz(201)=200.9 μ mz(260)=259.4 μ mz(314)=314.5 μ mz(331)=332.1 

0 1 t= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Figure 6.6: Example spectra alignment in DRIP given an observed spectrum s, cs = 2,

x = EALK, the theoretical Gaussian peaks of vx and the hypothesis is listed in Table 6.1.

Note that t is the frame number, all Gaussians have equal variance, and vx(3), vx(4) are

deletions.

When it = 1, a constant penalty is returned rather than scoring the observations with

the currently considered Gaussians dictated by Kt, since scores may become arbitrarily bad

by allowing Gaussians to score m/z observations far from their means and this would lead

to a large dynamic range of scores. These constant penalties, denoted as amz and ain for

the m/z observation and intensity observation, respectively, are carefully selected to impose

a tradeoff between scoring observed peaks which are close to theoretical peaks or are high

intensity. Furthermore, so as to enforce that some observations be scored rather than inserted,
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Table 6.1: Random variable hypothesis for alignment displayed in Figure 6.6. Recall the

deterministic relationships K0 = δ0, Kt = Kt−1 + δt for t > 0, and given the theoretical peak

index Kt we have the theoretical peak vx(Kt). For instance, from the theoretical spectrum of

x = EALK, c(x) = 2 in Figure 2.4, we have K6 = K5 + δ6 and vx(K6) = vx(1) = 147.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

δt 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0

Kt 0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 4 4 4 4 4 4 4 5 5 5 5 5

it 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1

it enforces its child δt+1 to be zero in a frame following an insertion. Because δt and it are

hidden, DRIP considers all possible alignments, i.e., all possible combinations of insertions

and theoretical peaks scoring observed peaks. The Viterbi path, i.e., the alignment which

maximizes the log-likelihood of all the random variables, is used to score a peptide as well as

determine which observed peaks are most likely insertions and which theoretical peaks are

most likely deletions.

Note that the version of DRIP used in this work (Figure 6.5) is simplified relative to

the initially described DRIP model [28]. In particular, the previously described version of

DRIP required two estimated quantities, corresponding to the maximum allowable numbers

of insertions and deletions. These constraints were enforced via two chains of variables, which

kept track of the number of utilized insertions and deletions in an alignment, counting down

in subsequent frames. The current, simplified model automatically determines these two

quantities on the basis of the deletion and insertion probabilities as well as the insertion

penalties. This simplification comes at no detriment to performance (Figure 6.7) or running

time (experiment not shown). Max-product inference in a GM, even one as complicated as

DRIP, to compute the Viterbi path is supported in GMTK, making the exploration of model

variations possible without requiring significant code revision and debugging (an example
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command line to compute the Viterbi path of DRIP in GMTK is given in Appendix A.2).
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Figure 6.7: Performance of DRIP with two Markov chains limiting the number of allowable

deletions and insertions (called “Original DRIP”) versus simplified DRIP relying on carefully

selected insertion and deletion penalties without explicitly limiting the number of deletions

and insertions (called “Simplified DRIP”).

6.3.2 DRIP scoring function

Peptides are scored by their optimal alignment using their per-frame log-Viterbi Score,

ψ(s, x) =
1

ns
max
δt,it,∀t

log p(s|x) =
1

ns
log p∗(s|x). (6.9)

Dividing by the number of frames allows comparability of PSMs from different spectra. In

order to further analyze the scoring function, assume inference has been completed and we

have computed the Viterbi path, using ∗ to denote a variable’s Viterbi value. Let λ =
∑ñs

t=0 i
∗
t

denote the number of used insertions and note that p(it = 0) = p(i0 = 0). DRIP’s score is
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then

log p∗(s|x) =
ñs∑
t=0

[log p(δ∗t ) + 1{i∗t = 0}(log f(Omz
t |µmz(vx(K∗t )), σ2) + log f(Oin

t |µin, σ2))]

(6.10)

+ λ[log(amzain) + 3 log p(i0 = 1)] + 3(ns − λ) log p(i0 = 0),

where, as before, f(z|µ, σ̄2) is the scalar Gaussian with mean µ and variance σ̄2, evaluated

at z ∈ R. The learned model variances are such that σ2 << σ̄2, i.e., there is far more

uncertainty in intensity measurements than m/z measurements. Thus, it is easy to see that

when a peptide does not align well with the observed spectrum (i.e., many observed peaks

are far from the closest theoretical peak), the log f(Omz
t |µmz(vx(K∗t )), σ2) term severely

penalizes the score. Furthermore, this score decreases exponentially as the distance between

the observed peak and theoretical peak mean increases. This also means that peptides which

arbitrarily match intense peaks will still receive poor scores if they do not align well.

6.3.3 DRIP observed spectrum preprocessing

As with all other search algorithms, we score database peptides of at most a fixed maximum

length, specified prior to run time. Practical values of the maximum peptide length (the

maximum peptide length considered for all results presented is 50) mean that the number

of observed peaks is typically an order of magnitude larger than the number of theoretical

peaks for any scored peptide. Furthermore, most of these peaks are noise peaks [60], and as

such we filter all but the most l intense peaks, where in practice, l = 300.

After filtering peaks, the observed spectrum is renormalized as in SEQUEST [20], the

steps of which are as follows. Firstly, all observed peak intensity values are replaced with their

square root. Secondly, the observed spectrum is partitioned into 10 equally spaced regions

along the m/z axis and all peaks in a region are normalized to some globally maximum

intensity, which in our case is 1. Steps one and two greatly decrease the high observed

intensity variance, and step two helps ensure that scoring is not severely biased by many
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large peaks lying arbitrarily close to one another. Lastly, any peak with intensity less than

1/20 of the most intense peak is filtered.

6.3.4 Calibrating DRIP with respect to charge

Observed fragmentation spectra with low-resolution precursor data often have indeterminate

charge states. For such spectra, all candidates are scored and ranked assuming all charge

states, with the highest scoring peptide amongst all charges returned. This approach requires

that scores among differently charged spectra be comparable to one another. In DRIP,

however, this is not the case. Because the number of theoretical peaks essentially doubles

when moving from charge 2+ to charge 3+, higher charged PSMs which have denser theoretical

spectra and thus much better scores than lower charged PSMs, rendering differently charged

PSMs incomparable.

In order to alleviate this problem, we recalibrate scores on a per charge basis, projecting

differently charged PSM scores to roughly the same range. The procedure consists of first

generating a secondary set of decoy peptides disjoint from the target peptide set and primary

decoy peptide sets. Let Dt be the set of target peptides, Dd be the set of decoy peptides,

and Ddd be our new set of decoy peptides, such that Ddd ∩ (Dt ∪ Dd) = ∅. Next, all spectra

and charge states are searched, returning top ranking sets of PSMs X t ⊆ Dt, X d ⊆ Dd, and

X dd ⊆ Ddd. We then partition X dd based on charge. For each charge c and corresponding

partition, Zdd, we rank all PSMs based on score. Let Z t ⊆ X t be all PSMs of charge c, for

which we use their scores to linearly interpolate their normalized ranks in Zdd, using these

interpolated normalized ranks as their new calibrated scores. In order to recalibrate scores

greater than those found in Zdd, we use the 99.99th percentile score and maximal score for

linear interpolation. Once this procedure is done, a majority of recalibrated scores for PSMs

in Z t and Zd will lie between [0, 1] and a few barely above unity (this is largely true for

the targets, since a set of well expressed and identifiable target peptides typically outscores

all decoys), thus greatly decreasing the dynamic range of scores. With these recalibrated

scores, we may easily take the top ranking PSM of an observed spectrum amongst differently
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charged PSMs, without any loss in overall accuracy.

6.3.5 DRIP Search Accuracy

DRIP is benchmarked against Didea, MS-GF+, XCorr, XCorr p-value, and X!Tandem using

eight datasets collected using low-resolution MS1 and MS2 scans. Further details regarding

search settings, datasets, and how competitors were run may be found in Section 6.2.4.

As seen in Figure 6.8, DRIP is outperformed only by Didea on all Worm datasets and is

comparable to the calibrated tide p-value for all Yeast datasets. Note that the presented

DRIP results employ the generatively trained model (Section 8.1.1).)

6.3.6 DRIP for high-resolution fragment ions

In order to take advantage of the greater certainty in fragment ion locations afforded by

high-high data (discussed in Section 2.3), the theoretical peak Gaussians DRIP utilizes change

in two significant way. Firstly, with the increased certainty of m/z measurements, Gaussians

are centered directly at fragment ion locations. Previously, for high-low and low-data spectra,

fragment ions were integerized and used to access one of a finite number of Gaussians (the

means of which were learned). Secondly, the variance of all Gaussians is significantly smaller

than for low-resolution fragment ions. For the results presented in Figure 6.9, the variance

for all Gaussians is set such that 99.99% of the Gaussian mass lies within a 0.05 Th region.

In Figure 6.9, DRIP is benchmarked against MS-GF+, XCorr, XCorr p-value, and

X!Tandem, where all but XCorr p-value are run with settings reflecting high-high data (the

recursion utilized to compute XCorr p-values is not currently defined to utilize high-resolution

fragments). The presented malaria (Plasmodium falciparum) sample was digested using

Lys-C, labeled with an isobaric tandem mass tag (TMT) relabeling agent, and collected using

high-resolution precursor scans and high-resolution fragment ions. The data set consists of

12,594 spectra with charges ranging from 2+ through 6+. Searches were run using a 50

ppm tolerance for selecting candidate peptides, a 0.03 Th fragment mass tolerance, a fixed
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Figure 6.8: Drip performance for eight datasets.
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Figure 6.9: DRIP tested over a high-high Malaria dataset.

carbamidomethyl modification, a fixed TMT labeling modification of lysine and N-terminal

amino acids. Further details may be found in [74].
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Chapter 7

FASTER IDENTIFICATION OF PEPTIDES USING
GRAPHICAL MODELS

We now show how graphical models may be used to significantly reduce MS/MS search

time by representing all peptide candidates per observed spectrum under the same data

structure. In general, this is made difficult by the restriction that we would only like to

consider those candidates from the database of interest. For instance, for the log-linear model

described in Section 6.1, which we described in the context of XCorr, although we could make

the theoretical peak nodes (ut) hidden, it is a difficult to enforce that only valid theoretical

spectra be considered, since the difference between theoretical peaks is arbitrary due to the

theoretical spectrum being a union between b- and y-ions. Furthermore, even if theoretical

peak units were not an issue, constraining the model to only consider peptides from the

database is also a difficult task without further machinery. We thus turn to trellises, which

allow us to construct the state-space of a graphical model to exactly the set of theoretical

peaks for an arbitrary set of peptides.

A trellis is a graph over strings, the nodes of which are substrings and the edges of

which are characters from the alphabet of interest. Paths through the trellis correspond to

strings of interest. When constructing the trellis, the goal is to share edges amongst common

substrings, affording a compact representation of a large number of strings (a potentially

exponential number of strings in sub-exponential space). An example trellis is illustrated in

Figure 7.1(b) encoding the phrases in Figure 7.1(a). The green node denotes the source node,

from which all paths begin, and the red node denotes the sink node, where all paths must

end. As shown in Figure 7.1(b), subpaths in the trellis correspond to common subsequences

amongst the original sequences. Due to this commonality, trellises are commonly used used
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to share redundant computation in graphical models [35]. General trellises may contain

sequences outside the original set to be modeled (e.g., “Bananas are really bad” is not in

the input set of phrases in Figure 7.1(a), but are a valid path in the trellis in Figure 7.1(b)).

We thus only allow exact trellises (i.e., trellises only containing the original input set of

sequences, illustrated in Figure 7.1(c) for the phrases in Figure 7.1(a)) during construction

(further detailed in [72]). Trellises have been used to great success in speech recognition and

natural language processing, enabling fast decoding of speech signals [69, 51] and rendering

the discriminative training for large scale speech recognition tractable [59].

For our MS/MS database search, trellises allow us to construct GM state spaces comprised

of the set of theoretical spectra for the candidate peptides within a precursor mass tolerance.

With all the peptides candidates under the same roof, we may thus calculate the Viterbi path

to determine the top scoring PSM for linear models, such as XCorr, and DRIP. Redundant

computation is thus performed only once for the common sequences of theoretical peaks

amongst the candidate peptides. Note that, in the case of log-linear models (Section 6.1),

the state space is exactly the set of all candidate peptide theoretical spectra, whereas for

DRIP (Section 6.3), the state space is the set of all alignments between all the candidate

peptides theoretical spectra and the given observed spectrum. Owing to the use of Viterbi

inference, we use approximate inference, which we now describe in detail, to significantly

improve search runtime.

7.0.7 Approximate inference via pruning

Due to the temporal nature of DBNs, it is often desirable to perform approximate inference

when exact inference is too expensive. Such might be the case when the graph in each

frame is complicated, there are a large number of frames, or there are many low probability

configurations of random variables disjoint from the Viterbi path. In approximate inference,

we sacrifice guaranteeing that BP converges to the BP fixed point (i.e., the solution were

we to run normal BP over a junction tree) to speed up inference time. One particular set of

approximate inference algorithms which have been successful for DBNs are beam pruning
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Bananas are really great
Bananas are really yellow
Bananas look really great
Bananas look really bad
Bananas look really yellow

(a) Five phrases describing bananas.

Bananas
are
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(b) General trellis containing five phrases regarding bananas.
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Bananas
are

look

great

yellow

really

bad

(c) Exact trellis over five phrases regarding bananas.

Figure 7.1: Phrases describing bananas compressed using trellises.
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methods [56].

Figure 7.2: Lattice graph of HMM state space with five hidden states x0, x1, x2, x3, x4.

In k-beam pruning (also called histogram pruning), assuming a beam width of k ∈ N, only

the top k most probable states in a frame are allowed to persist. Such pruning has a profound

effect on the state space of the DBN. To see this, consider the HMM from Figure 5.6(a),

with five hidden states Xi ∈ {x0, x1, x2, x3, x4}. The state space of such an HMM is often

compactly represented via a lattice graph, which, for our case, is depicted in Figure 7.2

(this type of graph is typically called a trellis, but we refer to it as a lattice herein to avoid

confusion).

In Figure 7.2, each node denotes a state the hidden layer may take on in a frame, where

frames are denoted by the number below the graph. Each edge in the lattice denotes a

possible transition from one hidden state to another in the subsequent frame. A path through

the lattice thus denotes a particular instantiation of the random variables in the HMM. Such

an instantiation of random variables is called a hypothesis. For instance, considering an HMM

of length 3, one hypothesis would be x0, x1, x2, another would be x2, x3, x4, and so on, where

each hypothesis corresponds to a path through the lattice. For our HMM, we have |Xi|n = 5n

possible hypotheses. As one would expect, when |Xi| and/or n are large, the number of

hypotheses grows large very quickly.
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By utilizing a beam width of k in k-beam pruning, we ensure only the top k hypotheses

up to the current frame survive, thus pruning a potentially exponential number of hypotheses.

This approximate inference strategy and related variants have been especially effective in

applications utilizing Viterbi inference, where the only hypothesis of interest is the most

probable one. However, care must be taken so that k is sufficiently large to ensure that the

most probable hypothesis is not pruned early on. For instance, if we set a conservative beam

width where x0 was pruned in the very first frame, then all hypotheses beginning with x0

would subsequently be pruned. If it were the case that the most probable sequence began

with x0, we would never recover the Viterbi path. Thus, there is a tradeoff between inference

time and setting k sufficiently large. Luckily for our MS/MS GMs of interest, the Viterbi

path is robust so that we may prune many low-probability hypotheses early on.

7.1 Timing results

Instead of pruning away hypotheses of each data instance, beam pruning with trellises prunes

hypotheses of all data instances together, thereby achieving higher efficiency. For example, the

hypotheses of the original DRIP model only consist of a single peptide’s alignments between

an observed spectrum so that, when using beam pruning, poor alignments are pruned away

early on. With trellises, beam pruning enables a competition among all peptide hypotheses,

where peptide candidates which align poorly with the observed spectrum are pruned away

early, so we end up scoring only a subset of the candidates. Trellises, max-product inference,

and various types of beam pruning are supported in GMTK, facilitating the exploration of

inference options to quickly test and time GMs (an example command line for max-product

inference with k-beam pruning may be found in Appendix A.3).

Using the same graphical model inference engine (GMTK) for all models, we report

relative timing numbers to clearly demonstrate the algorithmic speed-ups afforded by trellises.

Experiments were carried out on a 3.40GHz CPU with 16G memory. For each experiment,

the lowest CPU time out of three runs is recorded, and we report the relative CPU time of

methods using trellises to those without. We test over three different datasets, two low-low
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datasets (Yeast-1 and Worm-1) and one high-high dataset (Malaria). We randomly select

and search 200 spectra each of the three datasets, using the precursor mass tolerance settings

listed in Table 4.1. Under the control of using the same graphical model engine, the relative

timing results reflect the ratio of computation required among different methods. Figure 7.3

displays the relative timing for DRIP and XCorr without trellises (the green bars, which

are the baseline for timing) versus with (raw relative runtime numbers may be found in

Appendix E).

For the XCorr mixture model, a fixed beam width k was used for all frames. As we

can see, XCorr with trellis runs significantly faster than without, achieving 10 and 16.2 fold

speed-ups on the low-low datasets Yeast-1 and Worm-1, respectively, and a 9.5 fold speed-up

on the high-high Malaria dataset. We test DRIP trellis with two beam pruning strategies.

The trellisbase pruning uses k-beams that are dynamic across time frames, with wider beams

for the early part and narrower beams later on. The trellisspeed pruning also uses a dynamic

beam width but with a narrow beam followed by pruning strategy all hypotheses whose score

falls below some fraction of the currently top scoring hypothesis in the current frame. Timing

tests show that DRIP runs 12.9, 11.6, and 12.4 times faster using trellises than without

trellises for Yeast-1, Worm-1, and Malaria, respectively.

Thus, trellises combined with beam pruning methods significantly improve MS/MS search

time, both for low-resolution and high-resolution data. This combination significantly speeds

up both simple models, such as the XCorr mixture model, and the much more complicated

DRIP model. We note that the log-linear mixture model may be easily adjusted to model

any other linear MS/MS scoring function, of which there are many, such as X!Tandem [14],

Morpheus [73], and the base scores of MS-GF+ [44] and OMSSA [24]; changing the observed

spectrum preprocessing will produce these other score functions, without a change of the

graphical model itself. Thus, in principle, the XCorr speed-ups displayed herein extend to

these other linear scoring functions. We further note that the algorithmic speed-up afforded

by using trellises may potentially be combined with previous work on improving XCorr

runtime, which focused on constant-factor improvements [16].
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Figure 7.3: DRIP and XCorr trellis timing results.
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Chapter 8

LEARNING GRAPHICAL MODELS FOR PEPTIDE
IDENTIFICATION

8.1 Training DRIP

All DRIP Gaussian means and variances have been effectively learned using a high-confidence

set of PSMs used in [47]. Note that this adds a great deal of modeling power to DRIP,

allowing for adaptability of the expected m/z location of theoretical peaks. In MS/MS data,

the m/z measurements may be offset by machine error [19] or contaminants present in the

complex sample. Learning the Gaussian means allows DRIP to account for and adapt to

these trends. Furthermore, the learned means themselves may be of interest to experts in the

field. GMTK supports both learning frameworks utilized for DRIP (examples command lines

may be found in Appendix A).

8.1.1 Generative training

For the overall training procedure, assume that we have a collection, C, of N i.i.d. pairs

(si, xi), where si is an observed spectrum and xi the corresponding PSM we believe to have

generated si. Let θ be the set of parameters for which we would like to learn, in our case,

DRIP’s Gaussian parameters. For generative training, we wish to maximize DRIP’s likelihood

with respect to the parameters to be learned, i.e.,

θ∗ = argmax
θ

N∑
i=1

log p(si|xi, θ),

where θ∗ is determined via expectation-maximization (EM) [15].

Utilizing a high-quality set of PSMs collected in [47], generatively learning DRIP’s

Gaussian parameters significantly improves performance relative to hand-tuned parameters
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(Figure 8.1). The hand-tuned parameters were chosen to represent the fixed binning strategies

of other existing methods such that each Gaussian mean is positioned in the center of a unit

interval along the m/z axis.
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Figure 8.1: Generatively training DRIP significantly improves performance.
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8.1.2 Discriminative training

A much more difficult training paradigm is that of discriminative training, wherein we do

not simply wish to maximize the likelihood under a set of parameters, but we would also

like to simultaneously minimize a parameterized distribution defined over a set of alternative

hypotheses. In our case, this alternative set of hypotheses consists of all candidate peptides

within the precursor mass tolerance not equal to xi, i.e., all incorrect explanations of si.

More formally, our discriminative training criterion is that of Maximum Mutual Information

Estimation (MMIE); defining the set of candidate peptides for si within precursor mass

tolerance w as Ci = D(Omz, cs,D, w) and denoting the set of all training spectra and high-

confidence PSMs as S and X , respectively, the function we would like to maximize with

respect to θ is then

Iθ(S;X ) =E log
p(si, xi|θ)

p(si|θ)p(xi|θ)
=
∑
si,Ci

p(si, Ci|θ) log
p(si, xi|θ)

p(si|θ)p(xi|θ)

=
∑
si,Ci

p(si, Ci|θ) log
p(si|xi, θ)p(xi|θ)
p(si|θ)p(xi|θ)

=
∑
si,Ci

p(si, Ci|θ) log
p(si|xi, θ)
p(si|θ)

=
∑
si,Ci

p(si, Ci|θ) log
p(si|xi, θ)∑
x∈Ci p(s

i, x|θ)
. (8.1)

Note that, while mutual infomation is typically defined over random variables, here we’ve

defined Iθ(S;X ) over sets.

We approximate this objective using the quantity Ĩθ(S;X ) = 1
N

∑N
i=1 log p(si|xi,θ)∑

x∈Ci p(s
i,x|θ) ,

which converges to the quantity in Equation 8.1 for large N by the i.i.d. assumption and the

weak law of large numbers. Our objective then is to find θ∗ such that

θ∗ = argmax
θ

Ĩθ(S;X ) = argmax
θ

1

N

N∑
i=1

log
p(si|xi, θ)∑
x∈Ci p(s

i, x|θ)

= argmax
θ

1

N

N∑
i=1

(log p(si|xi, θ)− log
∑
x∈Ci

p(si, x|θ)), (8.2)

where, for obvious reasons, we refer to Mn(si, xi) = log p(si|xi, θ) as the numerator model

and Md(x
i) = log

∑
x∈Ci p(s

i, x|θ) as the denominator model. Note that the numerator model
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is our objective function for generative training. In general, the sum over possible peptide

candidates in the denominator model makes the discriminative training objective difficult

to compute. To efficiently perform the computation in the denominator model, we utilize

trellises (Section 7). The optimization in Equation 8.2 is performed via stochastic gradient

ascent, detailed in Section 8.1.2.

Stochastic Gradient Ascent

In stochastic gradient ascent, we calculate the gradient of the objective function with regard

to a single training instance,

∇θĨθ(s
i;xi) = ∇θMn(si|xiθ)−∇θMd(s

i|θ), (8.3)

where the gradients of Mn and Md are vectors referred to as Fisher scores. Correspondingly, we

update the parameters θ using the previous parameters plus a damped version of Equation 8.3,

iterating this process until convergence. The overall algorithm is detailed in Algorithm 2. In

practice, we begin the algorithm by initializing θ0 to a good initial value, i.e., the generatively

learned parameters, and the learning rate ηj is updated with ηj+1 = (
√
j)−1. Intuitively,

the gradients move in the direction maximizing the difference between the numerator and

denominator models, encouraging improvement for the numerator while discriminating against

the incorrect labels in the denominator. Our experimental results show that discriminative

training improves performance relative to generative training at low q-values (Figure 8.2),

arguably the most difficult region to improve upon.

8.2 Training Didea

We show how hyperparameters for Didea’s scoring function may be efficiently learned. This

section assumes knowledge of Didea’s scoring function as detailed in Section 6.2. Consider an

observed spectrum s ∈ R2l and binned, quantized, and pre-preprocessed observed spectrum

z ∈ Rō, where ō is the maximum observable integer of the mass spectrometer. Didea’s

preprocessing consists of replacing each peak intensity with its normalized rank amongst all
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Figure 8.2: Discriminatively training DRIP improves performance over generative training.
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Algorithm 2 Discriminative Training via Stochastic Gradient Ascent

1: Initialize θ0, η0. Let j = 0.

2: while True do

3: θj+1 := θj; j := j + 1;

4: Update learning rate ηj;

5: for (si, xi) ∈ C do

6: θj := θj + ηj(∇θMn(si)|xiθ)−∇θMd(s
i|θ));

7: end for

8: if || θj−θj−1

θj−1
|| < ε then

9: break;

10: end if

11: end while

peak intensities, followed by reweighting processed intensities using a complicated, tailor-made

function. The function used in [63] to reweight rank-normalized peak intensities is

fλ(r) = 1− λe−λ + λe−λ(1−r) (8.4)

so that, for rank-normalized intensity β falling in bin j, we have z(j) = fλ(β).

Now, consider a charge 2+ peptide x = x0x1 . . . xn−1 with b-ions b1, b2, . . . , bn−1 and

y-ions y1, y2, . . . , yn−1. Define ñ = n − 1. Optimizing λ in fλ(i) is difficult as fλ(i) is non-

convex and Didea’s resulting posterior scoring function is both complicated and non-convex

utilizing this reweighting function, necessating a grid-search in [63] to find a well-performing

λ. In practice, a grid-search requires an entire database search over a training dataset per

iteration. Each iteration requires many hours on a single machine, so that convergence

may require days to complete in practice. Furthermore, this grid-search utilizes absolute

ranking as a measure of performance and is thus semi-supervised. We make Didea’s learning

framework much more efficient without any cost to performance by reformulating the log-

posterior as a concave function of λ which is optimized in seconds in practice, as opposed
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to days using grid-search on a single machine. Furthermore, this new framework is easily

extendable to other parameterizations of Didea’s log-posterior where the set of parameters

to be learned is expanded, but remain concave in the function of interest so that learning

remains tractable. We show that one such natural extension results in improved identification

accuracy. Considerations for parameterization of scoring functions similar in form to Didea’s

log-posterior, and for which parameter estimation remains tractable even for large numbers

of parameters, are discussed at length in Appendix D, where the tractable parameterizations

which we now utilize may be found in Appendix D.2.2.

8.2.1 Concave reparameterization of Didea’s scoring function

For a vector v ∈ Rō and shift τ ∈ [−M,M ], let vτ denote the vector v whose elements have

all been shifted τ units. Assume we utilize the reweighting function f ′λ(i) = eλi, so that

Didea’s log-posterior scoring function is then

log p(s, x|τ0 = τ, λ) = log
ñ∏
i=1

eλsτ (bi)eλsτ (yi)

= log
ñ∏
i=1

eλ(sτ (bi)+sτ (yi))

= log eλ[
∑ñ
i=(sτ (bi)+sτ (yi))]

= log eλ(bT sτ+yT sτ )

= log eλ(b+y)T sτ

= λ(b+ y)T sτ ,

where b and y are boolean vectors of length ō such that for the ith b- and y-ions of x, bi and

yi, we have b(bi) = 1 and y(yi) = 1 and zero otherwise.
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Didea’s scoring function is then

log p(τ0 = 0|s, x, λ) = log eλ(b+y)T s − log
M∑

τ=−M

eλ(b+y)T sτ

= − log
M∑

τ=−M

eλ[(b+y)T sτ−(b+y)T s)]

= − log
M∑

τ=−M

eλ(b+y)T (sτ−s) (8.5)

Note that Equation 8.5 is concave in the quantity λ(b+ y)T (sτ − s). Defining z ∈ R|T |

s.t. z(i) = λ(b + y)T (si − s), we can see that based on the ranges of b, y, and s, −2 ≤

z(i) ≤ 2. Assume that we have a set D of N i.i.d. observed spectrum and peptide pairs,

D = {(s1, x1), (s2, x2), . . . , (sN , xN)}, the posterior over all i.i.d. shifts τ 1
0 , τ

2
0 , . . . , τ

N
0 is then

log p(τ 1
0 = 0, . . . , τN0 = 0|s1, . . . , sN , x1, . . . , xN , λ) =

N∑
i=1

log p(τ i0 = 0|si, xi, λ). (8.6)

Equation 8.6 remains concave due to the concavity of each log p(τ i0 = 0|si, xi, λ). Defining

zi(τ) = (bxi + yxi)
T (si,τ − si) and gD(λ) =

∑N
i=1 log p(τ i0 = 0|si, xi, λ), our optimization

objective is thus

max
λ

gD(λ) = max
λ

N∑
i=1

log p(τ i0 = 0|si, xi, λ) = max
λ
−

N∑
i=1

log
M∑

τ i0=−M

eλz
i(τ i0). (8.7)

Differentiating with respect to λ, we have

d

dλ
gD(λ) = −

N∑
i=1

1∑
τ i0
eλz

i(τ i0)

∑
τ i0

zi(τ i0)eλz
i(τ i0). (8.8)

We may efficiently learn the global optimum, λ∗ = argmaxλ
∑N

i=1 log p(τ i0 = 0|si, xi, λ) using

Equation 8.8, and a steepest descent method. We utilize stochastic gradient ascent (SGA),

defined in Algorithm 2. Training may also be sped up by precaching each zi(τ i0) in Equation 8.8.

We note that this is overall scheme is an instance of efficient discriminative training of a

generative model, by virtue of Didea’s conditional log-likelihood scoring function.



82

0.02 0.04 0.06 0.08 0.10
q-value

0

2

4

6

8

10

12

S
pe

ct
ra

id
en

tifi
ed

(1
00

0’
s)

Didea grid-search
Didea concave max

(a) Worm-1, charge 2+

0.02 0.04 0.06 0.08 0.10
q-value

2

3

4

5

6

7

S
pe

ct
ra

id
en

tifi
ed

(1
00

0’
s)

Didea grid-search
Didea concave max

(b) Worm-2, charge 2+

Figure 8.3: Absolute ranking for Didea under fλ(·) optimized using a grid-search (“Didea

grid-search”) and Didea under f ′λ(·) optimized using a SGA (“Didea concave max”) for

Worm-01, charge 2+. Relative ranking:

Dataset Didea grid-search Didea concave max

Worm-01 0.836869 0.841460

Worm-02 0.729957 0.732219
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Utilizing the set of PSMs collected in [47] (the same data used to train DRIP in Section 8.1),

training converges in seconds utilizing a single core of an Intel Core i7-330 3.4GHz processor

with 16GB of memory). This is in stark contrast to the grid-search performed in [63], which

requires days to complete utilizing the same compute environment as each iteration of the

grid-search requires a full target/decoy database search and thus many hours to complete.

Furthermore, there is no significant performance loss utilizing λ∗ and the new formulation

of Didea’s scoring function utilizing f ′λ(·) compared to utilizing the complicated reweighting

function fλ(·) from [63], as seen in Figure 8.3. Finally, we note that this new framework leads

to improved relative ranking.

8.2.2 Concave reparameterization of Didea’s scoring function for improved search accuracy

We now define a natural extension to the concave reparameterization of Didea’s scoring

function. In this extension, we will greatly increase the number of parameters to be learned

but, by remaining in the realm of concavity, efficiently learn all parameters. This leads to

fast parameter learning and improved identification accuracy, especially at low q-values.

For weight vector λ ∈ R2M+1, our objective function to be optimized is now

max
λ

gD(λ) = max
λ

N∑
i=1

log p(τ i0 = 0|si, xi,λ) = max
λ
−

N∑
i=1

log
M∑

τ i0=−M

e
λ
τi0
zi(τ i0)

(8.9)

the partial derivatives of which are f

δ

δλi
gD(λ) = −

N∑
i=1

1∑
τ i0
e
λ
τi0
zi(τ i0)

zi(τ i0)e
λ
τi0
zi(τ i0)

. (8.10)

Where previously, in Equation 8.7, we learned a global weight for all osberved spectrum

shifts, we now learn a specific weight for each individual shift in Equation 8.9. Equation 8.9

is concave in λ. Utilzing the same training data and compute environment described in

Section 8.2.1, Equation 8.9 converges to a global optimum in a few hours using SGA. In

contrast, such training would be intractable utilizing a grid-search.

As seen in Figure 8.4, weighting each observed spectrum shift differently results in improved

search accuracy relative to the previously trained Didea objective functions. Having greatly
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Figure 8.4: Absolute ranking for Didea under fλ(·) optimized using a grid-search (“Didea

grid-search”) and Didea under f ′λ(·) optimized using a SGA (“Didea concave max”) for

Worm-01, charge 2+. Relative ranking:

Dataset Didea grid-search Didea concave max Didea concave max, parameter per shift

Worm-01 0.836869 0.841460 0.841549

Worm-02 0.729957 0.732219 0.734037
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expanded the set of learned parameters and shown these parameters have a positive effect

on performance, a natural direction is to learn a sparse λ where only the most “important”

observed spectrum shifts remain nonzero after training. This and other feasible extensions of

Didea’s learning framework are discussed in Appendix D.3.
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Chapter 9

FEATURE EXTRACTION FOR IMPROVED
POST-PROCESSING ACCURACY USING DRIP

Scoring functions often suffer from poor calibration, where PSM scores from different

spectra are difficult to compare to one another. Thus, although a scoring algorithm may do

well ranking an observed spectrum’s generating peptide above all other database peptides

(the task of relative ranking), the scoring algorithm may perform poorly in terms of ranking

target PSMs above decoy PSMs from other spectra (what we refer to as absolute ranking,

defined in Chapter 4). In order to address the calibration issue, methods in the field have

been developed [42, 13, 17, 38, 66] which accept as inputs PSMs and post-process these PSM

scores to more easily be compared to one another. These post-processors have been shown

to improve performance for methods which are already known to be well-calibrated [26, 33],

further displaying their utility to identification accuracy.

The most accurate such post-processing algorithms are semi-supervised, where both target

and decoy PSMs are passed as inputs, along with features regarding each PSM [17, 38, 66].

Each decoy PSM is known with certainty to not have generated its corresponding observed

spectrum whereas, in general, we do not know with certainty whether a target PSM generated

its observed spectrum. These partial labels are used to denote the targets and decoys as

positive and negative classes, respectively, for classification.

The widely used post-processor Percolator [38] uses the target and decoy PSMs along with

their features to train a support vector machine (SVM). Utilizing the learned support vectors,

the target and decoy scores are adjusted such that their respective score distributions are

better separated in order to improve identification accuracy. Critical to reranking performance

are the features used, which typically involve the peptide charge, peptide mass, difference
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Table 9.1: Default Percolator features for Crux v2.1.16567.

Feature Description

Sp Sp score

lnrSp Natural logarithm of sp score

deltLCn Difference between a PSM’s XCorr and the XCorr of the last-ranked

PSM, divided by the PSM’s XCorr or 1, whichever is larger.

deltCn Difference between a PSM’s XCorr and the XCorr of the next-ranked

PSM, divided by the PSM’s XCorr or 1, whichever is larger.

IonFrac Estimated fraction of b and y ions theoretical ions matched to the

spectrum.

Mass Precusor mass.

PepLen Peptide length.

Charge1 1{PSM charge = 1}

Charge2 1{PSM charge = 2}

Charge3 1{PSM charge = 3}

enzN Is the peptide preceded by an enzymatic (tryptic) site?

enzC Does the peptide have an enzymatic (tryptic) C-terminus?

enzInt Number of missed internal enzymatic (tryptic) sites

lnNumSP Natural logarithm of the number of database peptides within the speci-

fied precursor range

dm Difference between the observed precursor and peptide mass

absdM Absolute value of the difference between the observed precursor and

peptide mass
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between precursor and peptide mass, absolute different between precursor and peptide mass,

and number of scored candidates, to name a few.

Table 9.2: DRIP derived features.

Feature Description

insertions Number of inserted observed peaks.

deletions Number of deleted theoretical peaks.

scoredPeaks Number of non-inserted observed peaks.

usedTheoPeaks Number of non-deleted theoretical peaks.

sumScoredIntensities Sum of the intensities of non-inserted observed peaks

sumScoredMz Sum of the absolute differences between non-inserted

observed peaks and the DRIP Gaussian mean used

to score those peaks

As previously noted, inference in DRIP returns much information regarding a PSM. With

DRIP’s Viterbi path, the sequence of insertions and deletions is known, so not only can

we infer the number of insertions and deletions, but also exactly which observed peaks are

insertions and which theoretical peaks are deletions. We use these quantities to add to

Percolator several new features, listed in Table 9.2. The default features used for Percolator

in Crux v2.1.16567 [52] and to which the DRIP derived features are added to are listed in

Table 9.1. As seen in Figure 9.1, adding these DRIP derived features significantly increases

performance relative to Percolator using standard features. We take this approach one step

further, using DRIP to derive these features for other scoring algorithm’s PSMs and the

derived features to significantly improve post-processing performance. Furthermore, we show

that while similar features may be easily computed using a scoring algorithm’s quantization

scheme, the features derived by DRIP lead to significantly better post-processing identification

accuracy.
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Figure 9.1: DRIP utilizing the features listed in Table 9.1 as well DRIP derived features.
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9.1 Feature extraction using DRIP

A scoring algorithm’s PSMs may be fed into DRIP in order to extract the features listed

in Table 9.1. These features may then be appended to the standard set of features used

by a post-processor (such as Percolator) for a specific scoring algorithm. For instance, we

may extract features using DRIP given the PSMs generated by XCorr p-value. Adding these

features to the standard features listed in Table 9.1 (which are the same features used in

conjunction with Percolator and XCorr p-values in [33]) results in the performance depicted

in Figure 9.2. XCorr p-values with the DRIP extracted features significantly improves search

accuracy for all datasets.

As a control to determine whether it is truly feature extraction using DRIP which leads

to performance gains, we also compute features the features in Table 9.1 by quantizing the

observed spectrum (as is done in many search algorithms) and adding these quantities to the

standard set of XCorr Percolator features in Crux listed in Table 9.1, referred to as “XCorr

p-value Percolator, proc feat.” in Figure 9.2. The DRIP derived features outperform the

analogous features derived using quantization, leading us to conclude that the greatest utility

of these features comes from decoding a PSM’s Viterbi path using DRIP.

We repeat this overall experiment for all presented datasets using MS-GF+, appending

features to the MS-GF+ derived features for Percolator derived in [26] (descriptions of

these features are listed in Table 9.3). As was the case with XCorr p-value Percolator, the

DRIP derived features helps to better classify target PSMs from decoy PSMs leading to

significantly improved Percolator accuracy (Figure 9.3). Once again, the DRIP derived

features significantly outperform those derived by quantizing the observed spectra (referred

to as “MS-GF+ Percolator, proc feat.”).

We have shown that the auxiliary information provided by DRIP has great utility, even

for other scoring algorithms.
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Figure 9.2: XCorr p-value utilizing the features listed in Table 9.1 as well DRIP derived

features.
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Table 9.3: MS-GF+ Percolator features, further described in [26].

Feature Description

RawScore MS-GF+ base score (dot-product)

DeNovoScore Maximum possible RawScore for observed spectrum

ScoreRatio RawScore
DeNovoScore

Energy RawScore−DeNovoScore

lnEValue − log MS-GF+ E value

lnSpecEValue − log MS-GF+ Spectral E value

IsotopeError Number of additional neutrons in peptide

LnExplainedCurrentRatio log
∑{intensity of matched fragment ions}∑

{intensity of all fragment ions}

LnNtermIonCurrentRatio log
∑
{intensity of matched N-terminal fragments}∑

{intensity of all fragment ions}

LnCtermIonCurrentRatio log
∑
{intensity of matched C-terminal fragments}∑

{intensity of all fragment ions}

LnMs2IonCurrent log
∑
{intensity of all fragment ions}

Mass Peptide mass

Length Peptide length

dM Theoretical mass− experimental mass

absdM |Theoretical mass− experimental mass|

MeanErrorTop7 1
7

∑
{Mass errors of the 7 highest intensity fragment ion peaks}

sqMeanErrorTop7 (MeanErrorTop7)2

StdevErrorTop7 Standard deviation of mass errors of the 7 highest intensity fragment

ion peaks

ChargeN Boolean denoting whether peptide charge is N

enzN Boolean denoting whether N-terminal agrees with cleavage rules

enzC Boolean denoting whether C-terminal agrees with cleavage rules

enzInt Number of internal cleavage sites
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Figure 9.3: MS-GF+ utilizing the features listed in Table 9.3 as well DRIP derived features.
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9.2 To bin or not to bin: soft versus hard decisions about theoretical peak
locations

The vast majority of scoring algorithms quantize the observed spectrum or fixed-width

threshold to align the theoretical and observed spectra. This means that outside of a pre-

specified range (typically ∼ 1 Th for low-resolution fragment ions), observed peaks may not

be scored by theoretical peaks, i.e., may not be considered a fragment ion match, as it is

often referred to in the literature. Such quantization and fixed-width thresholding schemes

may be thought of as hard decisions regarding fragment ion matches; past a specified point,

observed peaks may never be considered a match. The scoring functions which utilize such

hard decisions may be thought of as generating a static alignment between the theoretical

and observed spectra, such that there is only one allowable way in which theoretical peaks

may score observed peaks. A much different approach is taken in DRIP.

In contrast, DRIP scores m/z values in their natural resolution, without discarding

information due to quantization. Recall that, in DRIP, all possible alignments (i.e., sequences

of insertions and deletions and the resulting scoring of observed peaks by theoretical peak

Gaussians) are considered and the maximal such alignment is computed via the Viterbi

algorithm. We may thus think of DRIP as dynamically aligning the theoretical and observed

spectra, as we do not make any hard decisions regarding theoretical peak matches but rather

infer the alignment which maximizes the log-likelihood. A theoretical peak Gaussian is free

to score an observed peak very far in m/z, and it is the associated probability of such an

event that matters. In this way, DRIP makes soft decisions with regards to theoretical peak

matches, as all possible alignments between the theoretical and observed spectra are allowed

and associated with a probability.

We’ve seen, in Figures 9.2 and 9.3, that using DRIP derived features leads to significantly

better target/decoy classification accuracy than relying on quantization to derive such figures.

We now show that soft decisions allow DRIP to consider fragment ion matches that hard

decisions may not. Figure 9.4 displays the quantities used to derive the DRIP sumScoredMz
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Figure 9.4: DRIP mean differences used to calculate feature sumScoredMz, for XCorr p-value

PSMs.



96

for datasets Worm-1 and Worm-2. The x-axis for the scatter plots in Figure 9.4 corresponds

to a scored m/z observation and the y-axis corresponds to the distance between a scored m/z

observation and the mean of theoretical peak Gaussian used to score this m/z observation

(recall that 99.99% of the Gaussian mass lies within a ∼ 1 Th). Making hard decisions, we

would not see any fragment ion matches with a distance greater than ∼ 0.5 Th from their

scored m/z observations. However, we see that using soft decisions results in DRIP inferring

many matches which are greater than ∼ 0.5 Th, although, as expected, a majority of matches

are within 0.5 Th. Indeed, the static alignment any other scheme considers with regards to

the theoretical and observed spectra is also considered in DRIP and weighted amongst all

other possible alignments, so that the DRIP alignment strategy is strictly more general.

We show that matches inferred outside the bounds corresponding to hard decisions, as

is possible with soft decisions, are beneficial for identification accuracy. Figure 9.5 displays

the previously described DRIP features derived using soft decisions (denoted as “DRIP soft

feat.”) as well as DRIP features computed without including fragment ion matches further

than 0.5 Th from the scoring theoretical peak Guassian mean (denoted as “DRIP hard feat.”).

While the two sets of features improve upon the standard set of XCorr p-value features, there

is an appreciable loss in accuracy when we restrict the features to hard decisions.

Hard versus soft decisions have long been studied in machine learning and Bayesian

statistics, particularly in the context of the EM algorithm. In standard EM, also called soft

EM, probabilities are computed for each configuration of random variables and used during

the algorithm. In stark contrast, hard EM algorithms assign random variables values with

probability one. For instance, in the k-means algorithm, arguably the most popular hard EM

algorithm, datapoints are assigned to clusters based on their distance from all k centroids,

new centroids are computed based on cluster membership, and this process is repeated to

convergence. Notions of hard and soft decisions are also generally defined for graphical models

in terms of evidence [2], where observed children take their values with probability one or zero

depending on the values of their parents (hard evidence) or observed children take their values

with varying probabilities based on their parents (soft evidence, of which virtual evidence,
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Figure 9.5: DRIP features derived using hard and soft decisions for XCorr p-values plus

Percolator.
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defined in Section 5.2, is a special case). This is the first work, to the authors’ knowledge,

that explores soft and hard decisions regarding MS/MS fragment ion matches, with DRIP

being the first model to afford the ability to make soft decisions.
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Chapter 10

CONCLUSIONS

In this work, we’ve shown that many of the current state-of-the-art MS/MS scoring

functions may be described using GMs, from a GM representing any possible linear scoring

function (Section 6.1) to a GM with which exact, nonparametric p-values for linear scoring

functions may be computed (Section 6.1.1). The generality afforded by using GMs has allowed

us to show that linear scoring functions may be significantly sped up by roughly an order of

magnitude using trellises and beam pruning techniques (Section 7), both for low-resolution

and high-resolution data. We seek a similar speed up using the GM for exact, nonparametric

p-values in future work.

We have presented two GMs specifically designed to improve peptide identification of

tandem mass spectra, Didea (Section 6.2) and DRIP (Section 6.3). For Didea, whose scoring

function was designed to be a probabilistic analogue of XCorr, we derive upper and lower

bounds regarding its conditional log-likelihood, including one which directly relates its scoring

function to XCorr. Both Didea and DRIP allow effective parameter estimation (Section 8), in

contrast to a majority of existing scoring functions which rely on hardcoded parameters. In

the case of DRIP, generative training of model parameters significantly improves identification

accuracy. DRIP’s learning framework was also extended to the much more difficult but

ultimately more accurate discriminative training. In the case of Didea, the conditional

log-likelihood was reparameterized to be concave in the parameter to be learned, leading

to significantly faster training runtime than the previous approach [63]. Remaining in the

realm of concavity so that learning remains feasible, we showed that greatly expanding the

set of parameters to be learned improved Didea identification accuracy. Due to both the

generative representation of insertions and deletions and the use of max-product inference,
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DRIP was also shown to provide valuable auxiliary information regarding PSMs, within each

PSMs decoded Viterbi path.

Using the decoded sequences of insertions and deletions in DRIP, we’ve shown that we

may extract features which may be used in tandem with a post-processor, such as Percolator,

to significantly improved identification accuracy (Section 9.1). This makes DRIP particularly

useful as a feature extractor for other methods and their standard set of post-processing

features. Compared to simply calculating these features by quantizing the observed spectrum,

much of the performance improvement was shown to stem from extracting these features

by performing inference in DRIP, where m/z observations are not quantized. Furthermore,

DRIP represents a general alignment strategy where we do not make hard decisions about

where we expect fragment ions to lie, but rather penalize observations far from expected

fragment ion locations (soft decisions). This leads to DRIP discovering fragment ion matches

which are beyond the binning and threshold tolerances used by other methods and which are

beneficial to the extracted features and post-processing accuracy (Section 9.2). This is the

first exploration of such soft decisions for fragment ion matches within a scoring algorithm,

and shows the utility of this approach.

10.1 Future work

In total, graphical models have been shown to be versatile tools capable of both speeding

up and improving the accuracy of tandem mass spectra identification. The work described

herein lays the foundation for the following avenues exploring future speed and accuracy

improvements.

10.1.1 Denoising observed spectra

In practice, the number of observed peaks per spectrum is typically in the hundreds, so

that the number of insertions per PSM is typically an order of magnitude larger than the

number of fragment ion matches, leading to a low percentage of identified peaks (PIP), as

displayed for XCorr p-values in Table 10.1. We note that for the yeast datasets, which contain
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Table 10.1: XCorr p-value top PSM statistics (collected from the output of tide-search),

including the percentage of identified peaks (PIP).

Dataset Average b/y matches Average number of observed peaks Average PIP

Yeast-1 11.29 298.85 0.048

Yeast-2 11.22 301.63 0.047

Yeast-3 11.28 302.68 0.046

Yeast-4 11.26 303.8 0.047

Worm-1 12.07 772.96 0.018

Worm-2 12.65 794.26 0.0199

Worm-3 11.81 744.55 0.0197

Worm-4 11.88 707.57 0.02

relatively few observed peaks and thus far fewer insertions than the worm data, XCorr p-value

is competitive with DRIP (Figure 6.8), but for the worm datasets, which contain far more

noise peaks, XCorr p-value is significantly outperformed by DRIP. We conjecture that this

discrepancy is due to the low PIP of XCorr p-value PSMs for the worm data and DRIP’s

ability to accurately estimate noise peaks in the observed spectrum (thus allowing DRIP to

accurately identify peptides in low PIP spectra). As we’ve seen in Sections 9.1 and 9.2, DRIP

is highly accurate at estimating insertions and deletions. However, DRIP’s scoring function

is not calibrated, leading us to depend on heuristics to calibrate PSM scores (Section 6.3.4).

In order to combine the accurate information extracted in DRIP with principled calibration

methods, we propose the following two stage system which first utilizes DRIP to remove noise

in the observed spectrum then utilizes a calibrated scoring algorithm, such as XCorr p-values,

to compute calibrated scores. This system also affords exploring how improving PIP impacts

scoring function accuracy, addressing the earlier conjecture.

Given a peptide, DRIP will be utilized as a preprocessor of the observed spectrum,
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removing a large number of insertions to increase the PIP of PSMs. In order to allow for

some inaccuracy in the estimation of insertions, we will remove all but some small percentage

of inserted observed peaks. Futhermore, some observed spectra noise is valuable information

for identifying peptides, as seen in the improved accuracy utilizing only XCorr’s foreground

score versus including XCorr’s background score. Critical to this work will be determining

the percentage of insertions to be filtered per dataset and determining how insertions should

be filtered (e.g., should we rank and filter insertion peaks by intensity or by distance from

b/y-ion matches). Once denoised using DRIP, the observed spectrum will then be fed into a

calibrated algorithm to produce calibrated scores, such as XCorr p-values, yielding calibrated

scores identified at reliable PIPs.

This work has the potential to improve search accuracy relative to both search algorithms

(DRIP and the calibrated scoring algorithm), as we are combining both the accuracy of DRIP’s

insertion estimation with principled calibration methods (i.e., exact nonparametric p-values).

We note that DRIP may also be used to preprocess observed spectra for noncalibrated scoring

functions (such as XCorr or X!Tandem) and such preprocessing may improve scoring function

performance by improving each PSM’s PIP (XCorr’s PIP closely resemble those in Table 10.1),

though it would be surprising if performance were better than a standard DRIP search since

DRIP already significantly outperforms uncalibrated scoring algorithms.

10.1.2 Further extensions to Didea’s learning framework

In Section 8.2, we reparameterized Didea’s scoring function to be concave in the sole parameter

to be learned. We then increased the number of learnable parameters, while retaining a

concave objective function. Learning the expanded number of parameters lead to some

improved search accuracy, but most importantly lead to a significant improvement in training

time compared to the grid search utilized in [63]. In future work, we plan to further build

on Didea’s improved learning framework, exploring both L1 and L2 regularization, in which

case the objective remains concave and may be feasibly trained. Regularization is a common

technique in machine learning, where a regularizer is added to the objective function so
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that solutions tend towards a particular form. In the case of L2 regularization, many of our

learned weights will tend to be small in magnitude, and in the case of L1 regularization,

many of our learned weights will tend to be zero. Recall that the expanded set of learned

parameters in Didea correspond to weights for each shift of the observed spectrum. Note that

for the L1 regularized shift weights, a learned zero weight means that particular shift is of

little or no importance to the optimized scoring function. Thus, study of the L1 regularized

parameters in Didea may also lead to insights to the related (Section 6.2.5) XCorr scoring

function. Particularly, if it is the case that a large number of L1 regularized shift weights

are zero and learning such parameters is beneficial for search accuracy, a similar framework

where we learn a sparse vector of weights per shift for XCorr may also prove beneficial.

10.1.3 Deep DRIP

Fueled by the greatly improved computational resources of the past decade, particularly

graphical processing units (GPUs), deep learning has re-emerged as a state-of-the-art tech-

nology, raising the performance bar for difficult tasks such as automatic speech recongition

(ASR) [53] and image classification [50]. As deep neural networks (DNNs) have been utilized

in ASR to replace the emission distributions in DBN speech decoders (what are called hybrid

DBN-DNN models), a similar approach may be taken utilizing DRIP. Particularly, we propose

replacing DRIP’s conditional Gaussian distributions used to score observed peaks with DNNs.

Similar to ASR, given high-confidence training PSMs, DRIP would first be discriminatively

trained, then the Viterbi path computed for each training PSM. The DRIP decoded sequence

of fragment ions may then be used as labels and the observed peak observations as inputs

to a DNN. In order to handle insertions, we may assign such peaks a unqiue class label

(though labeling an observation with both the fragment ion and binary insertion value is

also a possibility) to learn the insertion penalty. However, there is no guarantee the learned

insertion penalty will provide the necessary tradeoff to accurately allow DRIP to distinguish

between insertions and fragment ion matches (i.e., the network may learn that insertions

should receive better scores than noninsertion observations), in which case deriving a uniform



104

penalty from the range of learned DNN scores is a possible solution.

This is perhaps the most ambitious proposed work, as it is nontrivial to effectively tune

the many hyperparameters in a deep network (number of layers, number of units per layer,

stochastic gradient descent learning schedule, number of training epochs, etc.) for new

applications. The large state space of the labels (fragment ions) will require a deep and

wide network, a very large amount of high-confidence training PSMs (this is critical), and

significant training time. Furthermore, DRIP for high-resolution MS2 spectra (Section 6.3.6)

does not have a fixed set of theoretical Gaussians (the set of Gaussian means is the set of

unquantized b/y-ion values change for each candidate peptide set). While this may be rectified

by fixing the set of high-resolution Gaussians via only retaining up to some pre-specified

number of significant digits (for instance, retaining up to two significant figures equates to

200,000 theoretical Gaussians), this necessarily leads to a larger number of DNN class labels

to be learned. This is a difficult hurdle, as DRIP’s 2,000 low-resolution theoretical spectrum

class labels is already large for a DNN to effectively learn in practice (for context, [53]

utilized five hidden layers of 2,048 units to learn 183 class labels for ASR), so that training a

high-resolution DNN will require either an even larger network and significantly more training

data than the low-resolution case, or some other strategy to handle this high-dimensionality

must be considered.

Finally, we note that the training data must provide sufficient evidence to learn each class

label, such that each fragment ion match corresponding to a class label be represented in

the training data. Otherwise, some alternate strategy must be proposed to learn those class

labels for which the DNN does not have sufficient examples to effectively learn. In order to

determine that the deep network is effectively learning parameters, one may check that the

network assigns higher scores to observations close, in m/z value, to the class label (i.e., m/z

observations score better the closer they are to fragment ions).
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10.1.4 Deep feature extraction

We’ve seen that DRIP may be utilized to extract accurate features describing PSMs. Such

DRIP extracted features may be used in Percolator for significantly improved score recali-

bration. This begs the question whether we can extract other accurate features which may

help Percolator better distinguish between the target and decoy classes during training. In

order to further explore PSM feature extraction, we propose utilizing deep models, which

have been used to great effect to extract features in other domains, such as ASR [54, 64, 62].

Central to these feature extractors are the training of deep autoencoders [30], deep networks

which learn a lower-dimensional representation of the data of interest.

In a typical deep autoencoder, the input and output layers are tied. The middle layer

of the deep autoencoder is called the bottleneck layer, and typically consists of significantly

fewer units than the input/output layers. The layers from the input layer to the bottleneck

layer typically consist of fewer and fewer units, which is similar for the layers going from the

bottleneck layer to the output layer (the network is often symmetric about the bottleneck

layer, and the top half of the network may even be tied with the bottom half, excluding the

bottleneck, as a form of regularization). Thus, from the input to the bottleneck layer, the

network is learning a lower and lower dimensional representation of the data, and from the

bottleneck to the output layer, the network is learning how to reconstruct the data from the

lower dimensional to the original dimensional space. The learned feature activations of the

bottleneck layer may then be used to accurately encode the data in an incredibly compact

form.

We propose using deep autoencoders to learn a lower dimensional representation of PSMs,

and utilizing the compact representation as features to help classification in Percolator. The

proposed deep autoencoder is depicted in Figure 10.2(a). The input and output layers consist

of vector representations of the theoretical and observed spectra (in practice, the input and

output dimension would thus be 4000). The bottleneck layer would be of a significantly

smaller dimension than the input and output layers, though the bottleneck size in practice,
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(a) PSM deep autoencoder.

(b) PSM deep feature extractor.

Figure 10.1: Deep autoencoder to learn mapping of PSMs to lower dimensional space and

subsequent network for feature extraction. The actual number of layers and units per layer

will vary, but the hourglass shape of the model will likely remain the same.
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as well as the tapering envelope of all other hidden layers, require exploration. The feature

extractor is depicted in Figure 10.2(b) where, once training of the autoencoder is completed,

we remove the top half of the network and use the feature activations of the bottleneck layer

as our extracted features. We may think of the network as condensing the information in the

input layer, removing redundancy, and boiling the data down into a dense, compact feature

vector.

The inclusion of accurate features detailing PSMs may further improve the quality of the

feature representation learned by the autoencoder. To this end, we propose the model variant

in Figure 10.2, where the input and output layers both include the highly accurate DRIP

extracted PSM features. In this case, it will likely be desirable to exclude the DRIP extracted

features from Percolator in order to avoid redundancy in the features used for classification

(the deep network extracted features now encode the DRIP features). We note that this is not

exclusive to DRIP extracted features, as any set of Percolator features may be used during

autoencoding. In this way, we may use standard sets of Percolator features, such as those

used for XCorr or MS-GF+ PSMs, to train the deep autoencoder. For such cases, it may

be necessary to increase the bottleneck layer size, as well as solely use the learned feature

representation in Percolator (to avoid redundancy, as previously mentioned).

As noted in Section 10.1.3, tuning the many hyperparameters of the deep network is

nontrivial and will take much work to explore and analyze. A very large number of high-

confidence PSMs will also be necessary to train the network, as well as a large amount of

compute time. However, once the network is trained, we may extract features using the

models in Figures 10.1(b) and 10.2(b).

10.1.5 Faster p-value computation for linear scoring functions

Calibrating scores by computing exact, nonparametric p-values (Section 3.1.4) has significantly

improved identification accuracy of the base linear scoring functions, perhaps best exemplified

by comparing the accuracy XCorr versus the accuracy of XCorr p-value (Figures 4.1 and

4.2). However, this improvement in accuracy comes at a cost in runtime, as computing the
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(a) PSM deep autoencoder, also using DRIP features.

(b) PSM deep feature extractor, also using DRIP features.

Figure 10.2: Deep autoencoder to learn mapping of PSMs to lower dimensional space and

subsequent network for feature extraction, also utilizing DRIP features. Note that Perolcator

features, such as those standardly used with XCorr and MS-GF+, may also be used. The

actual number of layers and units per layer will vary, but the hourglass shape of the model

will likely remain the same.
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dynamic programming matrix for each observed spectrum requires significantly more time

then scoring and ranking peptide candidates by XCorr (or by the linear scoring function to

be calibrated) [33]. In this work, we’ve described how the scoring and ranking of peptide

candidates by linear scoring functions may be significantly sped up by graphical models utilized

in tandem with trellises and beam pruning, approximate inference techniques (Section 7). We

now describe how graphical models and variational inference may be utilized to potentially

speed up computation of the distribution of peptide scores used to compute p-values.

Recall the graphical model described in Section 6.1.1, which computes the distribution

relative to a linear scoring function of all peptide scores of a particular precursor mass, given

the observed spectrum. The distribution of interest (equivalent to the last column of the

dynamic programming matrix) is the posterior of a random variable in the epilogue which

corresponds to the total XCorr of a peptide accumulated in successive frames, computed via

sum-product inference. For graphical models, variational methods [36, 70] are a family of

approximate inference algorithms wherein we estimate the posterior distribution of interest

via a surrogate distribution which is often much easier to compute. Key to this approach

is the parameterization of the surrogate distribution via variational parameters and casting

the learning of these parameters as an optimization problem. This optimization problem

(maximization of the extended lower bound, or ELBO) is equivalent to minimizing, with

respect to the variation parameters, the Kullback-Leibler (KL) divergence between the

posterior of interest and the surrogate distribution, thus ensuring these two distributions are

“close” (as measured by the KL divergence).

Variational inference has been used to great success, often in cases where the posterior of

interest is intractable to compute but utilizing the surrogate function is feasible [10, 18, 31],

and its utiliziation would be novel to MS/MS. Furthermore, this would serve as a critical

speedup to MS/MS analysis, as nonparametric p-values for linear scoring functions has been

a topic of great interest in the field but are much slower, in practice, to compute than the

uncalibrated linear scores of all peptide candidates [33]. Assuming a significant speed up

using variational methods to compute the posterior necessary to calculate nonparametric
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p-values, graphical models would thus significantly improve search times for the scoring and

ranking of peptides (Section 7) as well as the principled calibration of these PSMs via p-value

computation.

10.1.6 Approximate Didea p-values

Recall the linear upper bound to Didea’s scoring function, derived in Section 6.2.5. Further

study of this upper bound, for which we may efficiently compute exact p-values of, may

allow us to approximate p-values for the original, non-linear Didea scoring function. We

describe a variational approach, wherein we approximate the distribution of interest (which

is computationally difficult to compute in practice) via a simpler surrogate function which is

much more tractable. Critical to this strategy is that the surrogate function upper (or lower)

bound the distribution of interest, so that minimizing (or maximizing) the surrogate function

with respect to variational parameters leads to an accurate estimate of the distribution of

interest. Bounds on Didea’s scoring function provide future avenues to approximate p-values

for Didea’s complicated scoring function. Thus, in future work, we plan to parameterize

Didea’s upper bound (which is linear) and utilize the minimized (with respect to variational

parameters) upper bound as a surrogate for Didea, efficiently computing p-values for the

surrogate function which serve as approximate p-values for Didea.
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Appendix A

INFERENCE IN MS/MS GRAPHICAL MODELS: GMTK
COMMAND LINES

We provide the Graphical Models ToolKit (GMTK) command lines for the many different

applications of GM inference for MS/MS peptide identification detailed in this work. For

further discussion of defining GMs in GMTK and the many inference options supported by

GMTK, please see [7]. After each GM is defined in what is called a structure file (denoted

below with the extension .str), each model is triangulated (discussed in Section 5.1.2)

using the executable gmtkTriangulate to produce a triangulate file (denoted below with the

extension .trifile).

A.1 Sum-product inference in Didea: gmtkJT

Sum-product inference via the junction tree algorithm (detailed in Section 5.1.2) is used to

calculate the posterior probability with which Didea utilizes to score peptides. The junction

tree algorithm is supported in GMTK via the executable gmtkJT. Given the GM defined

in Figure 6.3 and the triangulated model, a clique containing the single hidden variable τ ,

corresponding to the shift of the observed spectrum, is defined as the first clique in the

epilogue of the triangulation file. The GMTK command line to calculate the posterior

distribution of τ is thus

gmtkJT −s t r F i l e didea . s t r \

− t r i f i l e d idea . s t r . t r i f i l e \

−inputMasterF i l e didea . mtr \

−o f1 quantizedObservedSpectrum −ni1 0 −nf1 2000 \

−o f2 pept ideSequence −ni2 1 −nf2 0 \

− f d i f f a c t 1 r l \

−doDis t r ibuteEvidence T \

−eCl iquePrintRange 0
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The arguments to gmtkJT are:

-strFile didea.str specifies the graph of the model

-trifile didea.str.trifile specifies the triangulated graph where, for Didea, a clique containing the single

hidden variable τ , corresponding to the shift of the observed spectrum, is defined as the first clique in

the epilogue

-inputMasterFile didea.mtr specifies the master file, which more specifically defines the relationship

between random variables and their parents (see [7] for further details).

-of1 quantizedObservedSpectrum specifies the first observation file, whose index is denoted by the 1

proceeding of containing the observed spectrum observations which, for Didea, corresponds to a vector

of quantized observations

-ni1 0 specifies the number of integers in the first observation file (none, since the quantized observed

spectrum is a vector of real numbers)

-nf1 2000 specifies the number of floating point numbers in the first observation file (2000, representing

2000 bins along the m/z axis)

-of2 peptideSequence specifies the second observation file, containing the sequence of amino acids

-ni2 1 -nf2 0 specifies Didea has only one peptide observation per frame, an integer denoting an amino acid

in the peptide sequence

-fdiffact1 rl specifies that the frames in Didea are defined in terms of the peptide sequence, so that the

observed spectrum observations are made available in each frame

-doDistributeEvidence T specifies that a backward pass take place during sum-product inference (detailed

in Section 5.1.2)

-eCliquePrintRange 0 specifies that the posterior of the first clique in the epilogue (defined in didea.str.trifile)

be output

A.2 Viterbi inference in DRIP: gmtkViterbi

In DRIP (the graph of which is defined in Figure 6.5), max-product inference via the Viterbi

algorithm is used to calculate the Viterbi path and Viterbi score of a peptide given the observed

spectrum. The Viterbi algorithm is supported in GMTK via the executable gmtkViterbi.

The GMTK command to calculate the Viterbi path of a PSM in DRIP is thus
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gmtkViterbi −s t r F i l e dr ip . s t r \

− t r i f i l e dr ip . s t r . t r i f i l e \

−inputMasterF i l e dr ip . mtr \

−v i t V a l s F i l e psmViterbiPath \

−o f1 observedSpectrumPeaks −ni1 0 −nf1 2 \

−o f2 peptideLength −ni2 1 −nf2 0 \

−inputTrainableParameters dr ipTrainedParameters

Many of the arguments are similar to those for Didea. Note that the vector of theoretical

peaks is defined in drip.mtr. The new arguments to gmtkViterbi are:

-vitValsFile psmViterbiPath specifies to write the Viterbi path of each PSM in output file psmViterbiPath

-of1 observedSpectrumPeaks -ni1 0 -nf1 2 specifies that each frame in DRIP contains two floating

point observations which correspond to the m/z value and intensity of an observed peak

-of2 peptideLength -ni2 1 -nf2 0 specifies that in each frame, we have an observed integer denoting the

length of the theoretical spectrum

-inputTrainableParameters dripTrainedParameters specifies the learned theoretical means and vari-

ances utilized by DRIP, further detailed in Sections A.4 and A.5

A.3 Faster database search via approximate Viterbi inference in XCorr trel-
lises: gmtkViterbi with k-beam pruning

GMTK supports specifying trellises to define the state of space of sequences of random

variables (specified in the structure file, detailed in [7]). GMTK also supports many different

types of beam pruning options for approximate inference, of which we use k-beam pruning

(detailed in Section 7.0.7). Utilizing the GM defined in Figure 6.1, where the observed

spectrum is quantized and preprocessed as in XCorr (described in Section 6.3.3), scoring sets

of candidate peptides was significantly sped up, as described in Section 7, using max-product

inference and beam pruning. The GMTK command line to calculate the most probable

candidate peptide using k-beam pruning is thus

gmtkViterbi −s t r F i l e x c o r r T r e l l i s . s t r \

− t r i f i l e x c o r r T r e l l i s . s t r . t r i f i l e \

−inputMasterF i l e x c o r r T r e l l i s . mtr \

−o f1 quantizedObservedSpectrum −ni1 0 −nf1 2000 \
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−o f2 pept ideTheore t i ca lPeaks −ni2 1 −nf2 0 \

− f d i f f a c t 1 r l \

−ckbeam 10000

The arguments to gmtkViterbi (other than the structure, triangulation, and master file)

are

-of1 quantizedObservedSpectrum -ni1 0 -nf1 2000 specifies, as in Didea, the vector of quantized and

preprocessed observed spectrum identifications

-of2 peptideTheoreticalPeaks -ni2 1 -nf2 0 specifies a theoretical peak in each frame

-fdiffact1 rl specifies that the sequence of frames is defined in terms of the sequence of theoretical peaks, so

that the observed spectrum observations are made available in each frame

-ckbeam 10000 specifies using k-beam pruning for appromximate inference, retaining only the top k = 10000

hypotheses in each frame

A.4 Generative training in DRIP: gmtkEMtrain

GMTK supports generative training of GMs via the expectation-maximization (EM) algo-

rithm [15, 8] through the executable gmtkEMtrain. Continuing from the discussion in the

earlier Appendix A.2, the GMTK command to train the Gaussian means and variances in

DRIP is thus

gmtkEMtrain −s t r F i l e dr ip . s t r \

− t r i f i l e dr ip . s t r . t r i f i l e \

−inputMasterF i l e dr ip . mtr \

−v i t V a l s F i l e psmViterbiPath \

−o f1 observedSpectrumPeaks −ni1 0 −nf1 2 \

−o f2 peptideLength −ni2 1 −nf2 0 \

−inputTrainableParameters dripHandTunedParameters \

−outputTrainableParameters dr ipTrainedParameters \

−maxEmIters 100 \

− l l d p 1 .0 e−6

Many of the arguments are the same from as those passed to gmtkViterbi in Appendix A.2,

except for:
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-inputTrainableParameters dripHandTunedParameters specifies that we initialize our parameters to

those of the hand-tuned parameters discussed in Section 8.1.1

-outputTrainableParameters dripGenerativelyTrainedParameters specifies where to write the out-

put EM learned parameters

-maxEmIters 100 specifies that we run EM for a maximum of 100 iterations

-lldp 1.0e-6 specifies to stop EM if the log-likelihood difference (lldp) between successive iterations is less

than 1.0e-6

A.5 Discriminative training in DRIP: gmtkMMItrain

GMTK supports Maximum Mutual Information Information (defined in Section 8.1.2) via

the executable gmtkMMItrain, the command line of which is

gmtkMMItrain \

−s t r F i l e dr ip . s t r \

− t r i F i l e dr ip . s t r . t r i f i l e \

−inputMasterF i l e dr ip . mtr \

−s t r F i l e 2 d r i p T r e l l i s . s t r \

−t r i F i l e 2 d r i p T r e l l i s . s t r . t r i f i l e \

−inputMasterF i l e2 dr ip . mtr \

−inputTrainableParameters dr ipGenerat ive lyTra inedParameters \

−inputTrainableParameters2 dr ipGenerat ive lyTra inedParameters \

−covarLr 1 .0 e−5 \

−meanLr 1 .0 e−5 \

−decayCovarLrRate 0 .25 \

−decayMeanLrRate 0 .5

As detailed in Section 8.1.2, the numerator model is the same as that trained during generative

training. So, as in Appendix A.4, the numerator model consists of specifying drip.str,

drip.str.trifile, and drip.mtr as the structure file, triangulation file, and master file,

respectively. The denominator model is defined to be, given the training database and
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observed spectrum, the set of peptide candidates other than the high-confidence PSM,

represented using a trellis. The denominator is thus specified as dripTrellis.str and

dripTrellis.str.trifile for the structure file and triangulation file, respectively (the

relationships between children and parents do not change, so the master file does not change).

The remaining options regarding gmtkMMItrain, which specify the learning rate in stochastic

gradient ascent, are discussed extensively in [61].
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Appendix B

UPPER AND LOWER BOUNDS ON DIDEA’S SCORING
FUNCTION

B.1 Second upper bound

Recall the discussion in Section 6.2.5 and please refer to Section 6.2 for general notation.

Interestingly, we may compute an alternative upper bound to Equation 6.7 for Didea’s scoring

function. Let h(τ0) = p(x, zτ |τ0 = τ). By Markov’s inequality, we have

Didea(s, x) = log p(x, z|τ0 = 0)p(τ0 = 0)− log
α

α
Eτ [h(τ0)]

≤ log p(x, z|τ0 = 0)p(τ0 = 0)− logαp(h(τ0) ≥ α)

≤ log p(x, z|τ0 = 0)p(τ0 = 0)− log p(h(τ0) ≥ α)− logα,

where α > 0. The distribution p(h(τ0)) may be computed naively in O(|T |n) time or much

faster using more the algorithms in Appendix C), so that we may efficiently achieve the upper

bound

Didea(s, x) ≤ inf
α

(
log p(x, z|τ0 = 0)p(τ0 = 0)− log p(h(τ0) ≥ α)− logα

)
. (B.1)

The relationship between the upperbound in Equation B.1 and the XCorr upper bound in

Equation 6.7 is currently unknown. These upper bounds may prove useful in future work

focusing on computing p-values for Didea. The current computational difficulty is that Didea’s

scoring function is non-linear, and thus does not lend itself to efficient dynamic programming

schemes to calculate p-values, such as those used employed by employed by MS-GF+ and

XCorr p-value. By relaxing Didea’s scoring function to a closely related, simpler function we

may be able to bound p-values for Didea’s original scoring function.
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B.2 Lower bound

It is often useful if one can derive lower bounds to accompany upper bounds regarding a

quantity. We now compute a lower bound for Didea’s scoring function, which accompnanies

the upper bounds in Sections 6.2.5 and B.1. Let k = supτ0 h(τ0) + ε, for ε > 0, and

d < E[h(τ0)]. Furthermore, assume Eτ [h(τ0)] > 0. By Markov’s reverse inequality, we have

1
k−d(Eτ [h(τ0)]− d) ≤ p(Eτ [h(τ0)]), so that

Didea(s, x) = log p(x, z|τ0 = 0)p(τ0 = 0)− logEτ [h(τ0)]

= log p(x, z|τ0 = 0)p(τ0 = 0)− log
k − d
k − d

(Eτ [h(τ0)]− d) + log (1− d

Eτ [h(τ0)]
)

≥ log p(x, z|τ0 = 0)p(τ0 = 0)− log (k − d)p(h(τ0) > d) + log (1− d

Eτ [h(τ0)]
)

≥ log p(x, z|τ0 = 0)p(τ0 = 0)− log (k − d)p(h(τ0) > d)− logEτ [h(τ0)]

≥ log p(x, z|τ0 = 0)p(τ0 = 0)− log (k − d)p(h(τ0) > d)− Eτ [log h(τ0)] (B.2)

≥ log p(x, z|τ0 = 0)p(τ0 = 0)− log (k − d)p(h(τ0) > d)− 1

|T |
∑
τ∈T

(b+ y)T z′τ

≥ log p(x, z|τ0 = 0)p(τ0 = 0)− (log (k − d)p(h(τ0) > d) +
1

|T |
∑
τ∈T

(b+ y)T z′τ ),

where Equation B.2 is due to Jensen’s inequality. p(h(τ0)) may be computed in at most

O(|T |n) time and, as previously noted, may be more quickly computed using one of the

algorithms in Appendix C, while
∑

τ∈T (b+ y)T z′τ may be computed in O(n) time by caching∑
τ∈T z

′
τ (as in XCorr). We may thus compute the following in at most O(|T |n) time,

Didea(s, x) ≥ sup
d:d<E[(h(τ0)]

[
log p(x, z|τ0 = 0)p(τ0 = 0)

−
(

log (k − d)p(h(τ0) > d) +
1

|T |
∑
τ∈T

(b+ y)T z′τ

)]
. (B.3)

Interestingly, the lower bound in Equation B.3 is a foreground score only involving the

non-shifted version of the observed spectrum minus a background score involving an average

over shifted versions of the observed spectrum, once more yielding a scoring function similar

to XCorr.
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Appendix C

EFFICIENT ALGORITHMS FOR CALCULATING ALL
INVIDIDUAL DOT-PRODUCTS IN A SLIDING

DOT-PRODUCT

Assume we have a collection of theoretical spectra, X, and an observed spectrum, y ∈ Rn,

where for x ∈ X, x ∈ Rn. We would like to compute sliding dot-products (cross-correlations)

for each x ∈ X. In the case of XCorr, we are interested in computing

XCorr(x, y) = xTy − 1

75

75∑
τ=−75

xTyτ = xT (z − 1

75

75∑
τ=−75

yτ ) = xTy′,

where the linearity of XCorr with respect to a theoretical spectrum allows the caching of y′

so that computing XCorr(x, y) ∀x ∈ X is easily accomplished in O(|X|n) time. However,

assume the scoring function we are interested in is not linear with respect to a theoretical

spectrum. For instance, let m = [xTy−75 x
Ty−74 . . . x

Ty75]T and m′ be the vector containing

the elements m in ascending sorted order, i.e., m′(0) ≥ m′(1) ≥ · · · ≥ m′(151). Now, consider

the scoring function

f(x, y) = xTy − 1

k

k∑
i=0

m′(i).

Denoting the function top(k,A), the inputs of which are and integer k and a set of elements

A, which returns the top k elements of A, we may write f(x, y) as

f(x, y) = xTy − 1

k

∑
a∈top(k,A)

a,

where A = {∪75
τ=−75 x

Tyτ}. In this case, the set top(k,A) and the correponsing shifts for the

top k dot-products may vary for each x ∈ X so that f(x, y) is not linear with respect to the

theoretical spectra. Thus, we must compute each individual dot-product for each x ∈ X.

Naively, this will require O(n2|X|) time, which prohibits use of f(x, y) in a practical setting.
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We present several algorithms which significantly reduce the compute time for calculating

each individual dot-product for all x ∈ X.

Let T be the set of shifts of interest (for XCorr, T = {−75,−74, . . . , 75}), n∗x be the

maximum number of nonzero elements amongst all vectors x ∈ X, and ny be the number of

nonzero elements of y. For x ∈ X, let x̃ be the vector of tuples of the nonzero elements of x

(i.e., a sparse representation), such that the first element of each tuple is a nonzero element’s

index in x and the second element of each tuple is the nonzero element’s value in x. Denote

the length of x̃ as nx. Let ỹ similarly be a sparse represenation vector of tuples representing

the nonzero elements of y whose length is ny.

C.1 Compute all individual sliding dot-products in O(n∗xny|X|) compute

Using Algorithm 3, we may leverage these sparse representations to compute all individual dot-

products for all x ∈ X in O(n∗xny|X|) time. Returned is a vector A the indices of which are the

the shifts of the sliding dot-product and the elements of which are the corresponding shifted

dot-product. Critical to this algorithm is utilizing the fact that for elements ỹ(i, 1), x̃(j, 1),

which are the indices of the ith and jth nonzero elements of x and y, respectively, they will

only be multiplied and added to the dot-product of shift (ỹ(i, 1)− x̃(j, 1)) mod |T |.

C.2 Compute all individual sliding dot-products in O(m|T ||X|) compute

Let m = min{n∗x, ny}. Algorithm 4 computes all individual dot-products for all x ∈ X in

O(m|T ||X|) time, running faster than Algorithm 3 when |T | < m.

C.3 Precaching for fewest computations possible

Algorithm 6 computes all individual dot-products with the absolute fewest number of opera-

tions possible via precaching. For a theoretical peak index i, we precache all nonzero observed

peaks for which i would multiply with in any dot-product. We thus avoid considering l /∈ T ,

as is checked in Algorithm 3. Let M be a hash function whose keys correspond to theoretical

peak indices and which returns a vector of pairs corresponding to the nonzero oberved
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Algorithm 3 Calculate A = {∪τ∈T xTyτ} in O(n∗xny|X|) time

1: Initialize the length |T | vector A to all zeros.

2: for i = 0, . . . , ny − 1 do

3: for j = 0, . . . , nx − 1 do

4: l = ỹ(i, 1)− x̃(j, 1); // ỹ(i, 2), x̃(j, 2) are multiplied for τ = ỹ(i, 1)− x̃(j, 1)

5: if l ∈ T then // for continuous ranges, sufficient to check min{T } ≤ l ≤ max{T }

6: l = l mod |T |;

7: A(l) += ỹ(i, 2) ∗ x̃(j, 2);

8: end if

9: end for

10: end for

11: Return A;

peak indices and values for all dot-products involving a theoretical peak. More formally,

we precache M as described in Algorithm 5. Having prechached M , we thus compute all

dot-products for a theoretical spectrum x ∈ X as described in Algorithm 6. Denoting the

maximum length of any of the vectors in M as d, the total resulting complexity, including

precaching of M , is O(κny + n∗xd|X|). Note that d ≤ |T | and, for MS/MS, κny � n∗xd|X| so

that our time complexity is O(n∗xd|X|) (i.e., precaching M is neglible compared to total run

time). In the worst case, the complexity of Algorithm 6 is no better than Algorithms 3 and

4, but is relatively much simpler and lends itself to efficient optimization by compilers.
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Algorithm 4 Calculate A = {∪τ∈T xTyτ} in O(m|T ||X|)
1: Initialize the length |T | vector A to all zeros.

2: if ny < nx then

3: t = ỹ;

4: ỹ = x̃;

5: x̃ = t;

6: end if

7: for i = 0, . . . , nx − 1 do

8: for τ ∈ T do

9: j = i− τ ;

10: if j ≥ 0 then

11: l = (ỹ(i, 1)− x̃(j, 1)) mod |T |;

12: A(l) += ỹ(i, 2) ∗ x̃(j, 2);

13: end if

14: end for

15: end for

16: Return A;
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Algorithm 5 Precaching all sliding dot-products

1: Let maximum theoretical peak index be κ.

2: Initialize array of arrays M .

3: for i = 0, . . . , κ do

4: for j = 0, . . . , ny do

5: l = ỹ(i, 1)− x̃(j, 1);

6: if l ∈ T then

7: l = l mod |T |;

8: M(i).append((l, ỹ(j, 2)))

9: end if

10: end for

11: end for

12: Return M ;

Algorithm 6 Calculate A = {∪τ∈T xTyτ} with precached M

1: Initialize the length |T | vector A to all zeros.

2: for i = 0, . . . , nx − 1 do

3: for (j, v) ∈M(i) do

4: A(j) += v ∗ x̃(i, 2);

5: end for

6: end for

7: Return A;
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Appendix D

CONVEX AND CONCAVE LOG-POSTERIORS FOR
EFFICIENT PARAMETER ESTIMATION

We consider learning parameterized log-posteriors of the form− log
∑

i cifi(θi). Specifically,

we are interested when these log-posteriors are concave or convex in the parameters to be

learned, rendering learning tractable. One such function which arises naturally, the log-sum-

exp (LSE) function, log
∑

i e
xi for xi ∈ R, is widely used in machine learning for parameter

estimation due to its convexity.

Let E = e be a set of evidential random variables and H be a set of hidden random

variables. Often of interest in Bayesian statistics is the log-posterior probability log p(H|E =

e) = log p(H,e)
p(e)

= log p(H,e)∑
h∈H p(H=h,e)

= log p(H,e)∑
h∈H p(h)p(e|h)

. We assume p(h) and p(e|h) are non-

negative probability distributions. We assume, as is the case in Didea log-posterior scoring

function (Section 6.2), that there is a particular hypothesis of hidden variables, h̃, for which

we are interested in computing the posterior log pθ(h̃|e), which is parameterized θ which

would like to learn. We further assume that θ is only involved in the conditional distribution

of the evidence given a hypothesis of random variables (as is the case when employing virtual

evidence, described in Section 5.2), so we have

log pθ(h̃|e) = − log

∑
h∈H p(h)pθ(e|h)

p(h̃)pθ(e|h̃)
= − log

∑
h∈H

p(h)

p(h̃)

pθ(e|h)

pθ(e|h̃)
= − log

∑
h∈H

chfh(θh), (D.1)

where ch are constants with regards to the parameters of interest and we have parameterized

function involving the evidence (one per hypothesis) fh(θh). By the non-negativity of p(h)

and p(e|h), ch and fh(θh) are both non-negative. We assume that fh(·) is smooth on R for

all h ∈ H. Note that, assuming a graphical model describing the factorization of the joint

distribution, the quantities p(h) and p(e|h) may be efficiently computed for any given h and

e. We interchangeably use n and |H|. In the most general setting, we assume that there is a
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parameter θh to be learned for every hypothesis of latent variables, though if we have fewer

parameters to estimate, parameter estimation becomes strictly easier.

D.1 Convex minimization

We have the following theorem describing when this quantity is concave and thus may be

minimized.

Theorem 1. The log-posterior log pθ(h̃|e) = − log
∑

i cifi(θi), where ci ∈ R+, is convex when

each fi : R → R+ is concave.

Proof. By the scalar composition of convex functions [11], d(g(x)) = d(
∑

i cixi) = − log
∑

i cixi,

where R+ is the set of nonnegative reals and x ∈ Rn
+, is convex since g(x) = cTx =

∑
i cixi

is concave and d(·) is convex, nonincreasing on R+. Thus, the composition a(x) = d(g(x)) is

convex and nonincreasing in each argument xi ∈ R+.

By the vector composition of convex functions, a(b(x)) = a(b1(x1), . . . , bn(xn)) is convex

when each bi : R → R+ is concave.

D.2 Concave maximization

Many applications will wish to maximize log pθ(h̃|e) with respect to θ, i.e.,

θ∗ = argmax
θ

log pθ(h̃|e). (D.2)

We are interested in determining when the quantity in Equation D.2 is concave, thus affording

efficient optimization.

When ch = 1, fh(θh) = eθh , we have the negative of the familiar convex function log-sum-

exp (LSE). In order to ensure concavity of Equation D.1, it is necessary and sufficient that

∇2
θ log pθ(h̃|e) � 0. We thus have the following

∇θ log pθ(h̃|e) =
−1∑

h chfh(θh)


c1f
′
1(θ1)
...

c|H|f
′
|H|(θ|H|)

 .
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Letting Z =
∑

h chfh(θh), we have

δ log pθ(h̃|e)
δθiδθj

= −


cif
′′
i (θi)Z−(cif

′
i(θi))

2

Z2 if i = j

−cif ′i(θi)cjf ′j(θj)
Z2 if i 6= j

Letting a =
[
c1f
′′
1 (θ1) . . . c|H|f

′′
|H|(θ|H|)

]T
and b =

[
c1f
′
1(θ1) . . . c|H|f

′
|H|(θ|H|)

]T
, we may

thus write

∇2
θ log pθ(h̃|e) =

−diag(a)

Z
+

1

Z2
bbT . (D.3)

Equation D.3 is non-negative definite if and only if, for all x ∈ Rn,

xT∇2
θ log pθ(h̃|e)x ≤0

Z2xT∇2
θ log pθ(h̃|e)x ≤0

xT (−Zdiag(a) + bbT )x ≤0

xT bbTx ≤xTZdiag(a)x

(
∑
i

cif
′
i(θi)xi)

2 ≤(
∑
i

cif
′′
i (θi)x

2
i )(
∑
i

cifi(θi)). (D.4)

Determining families of functions which satisfy Equation D.4 for all x ∈ Rn is nontrivial.

However, we provide some conditions for when this is true and describe the class of functions

containing the LSE which are a solution to Equation D.4. We provide conditions for the

homogeneous case where the function is Lipschitz, has bounded domain, and lower-bounded

second derivative.

Note that, if we have a solution g(θ) = d((f1(θ1), . . . , fn(θn)) = − log
∑

i fi(θi) to Equa-

tion D.4, then the composition g(φ(θ)) = g(φ1(θ1), . . . , φn(θn) is convex for all φi convex, by

the vector composition of convex functions.

D.2.1 Homogenous, Lipschitz case with lower-bounded second derivative

Theorem 2. Assume f(·) = fi(·) for i = 1, . . . , n such that f : [0, b] → R+ and f ′′ ≥

b̄. Assume f is Lipschitz continuous with Lipschitz constant k. Then the log-posterior

log pθ(h̃|e) = − log
∑

i cif(θi) is concave when
b̄(f(0)+f ′(0)b+ 1

2
b̄b2)

k2 ≥ 1.
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Proof. For the left-hand side of Equation D.4, by Lipschitz continuity, we have

(
∑
i

cif
′(θi)xi)

2 ≤k2(
∑
i

cixi)
2

where

k2(
∑
i

cixi)
2 =k2(

∑
i

p(i)

p(h̃)
xi)

2

=
k2

p2(h̃)
(
∑
i

p(i)xi)
2.

By the fundamental theorem of Calculus and the lower bound on the second derivative, we

have

f(y) =f(0) +

∫ y

0

(f ′(0) +

∫ t

0

f ′′(s)ds)dt

≥f(0) +

∫ y

0

(f ′(0) +

∫ t

0

b̄ds)dt

≥f(0) + f ′(0)y +
1

2
b̄y2

⇒ f(y) ≥f(0) + f ′(0)b+
1

2
b̄b2

Let β = f(0) + f ′(0)y + 1
2
b̄b2. For the right-hand side of Equation D.4, we thus have

(
∑
i

cif
′′
i (θi)x

2
i )(
∑
i

cifi(θi)) ≥(
∑
i

cib̄x
2
i )(
∑
i

ciβ)

≥ b̄β

p2(h̃)
(
∑
i

p(i)x2
i )(
∑
i

p(i))

≥ b̄β

p2(h̃)
(
∑
i

p(i)x2
i ).

Thus, by Jensen’s inequality,

(
∑
i

cif
′(θi)xi)

2 ≤ k2

p2(h̃)
(
∑
i

p(i)xi)
2

≤ k2

p2(h̃)

∑
i

p(i)x2
i .
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When b̄β ≥ k2, we have

k2

p2(h̃)

∑
i

p(i)x2
i ≤

b̄β

p2(h̃)

∑
i

p(i)x2
i

≤(
∑
i

cif
′′
i (θi)x

2
i )(
∑
i

cifi(θi)).

Theorem 2 provides several insights into the values that b may take on while ensuring

concavity. Let g(b) = (f(0) + f ′(0)b+ 1
2
b̄b2)− k2

b̄
.

Corollary 2.1. When b̄ > 0 and (f ′(0))2 ≤ 2b̄f(0) − k2, the homogeneous log-posterior

log pθ(h̃|e) = − log
∑

i cif(θi) is concave for all 0 < b <∞.

Proof. From Theorem 2, log pθ(h̃|e) is concave when g(b) ≥ 0. When b̄ > 0, g(b) is concave-up

and, when (f ′(0))2 ≤ 2b̄f(0)− k2, has no real roots so that it is always positive.

Corollary 2.2. Let A = {−f
′(0)±

√
(f ′(0))2−2b̄(f(0)− k2

b̄
)

b̄
}. Assume (f ′(0))2 ≥ 2b̄f(0)− k2. When

b̄ > 0, the homogeneous log-posterior log pθ(h̃|e) = − log
∑

i cif(θi) is concave when 0 ≤

b ≤ max{0,minA} or max{0,maxA} ≤ b ≤ ∞, and when b̄ < 0, pθ(h̃|e) is concave when

max{0,minA} ≤ b ≤ min{0,maxA}.

Proof. In this case, g(b) has two real roots. By Theorem 2, when b̄ > 0, g(b) is concave-up

and nonnegative for all b less than or equal too its minimal root and all b greater than or

equal to its maximal root. When b̄ < 0, g(b) is concave-down and nonegative for all b lying

between its two roots (inclusive).

D.2.2 Generalized LSE solution

Letting l, u, v be vectors with components li = xi
√
cif ′′i (θi), ui = xi

cif
′
i(θi)√

cifi(θi)
, vi =

√
cifi(θi),

we require

(uTv)2 ≤(lT l)(vTv). (D.5)
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Note that, by the non-negativity of ch and fh(θh), vi is real and the quantify lT l is always

real. The bound in Equation D.5 is guaranteed to hold when l = u (by the Cauchy-Schwarz

inequality). Thus, the log-posterior is concave when

li =ui

⇒ xi
√
cif ′′i (θi) =xi

cif
′
i(θi)√

cifi(θi)

⇒ f ′′i (θi)fi(θi) =(f ′i(θi))
2. (D.6)

Equation D.6 is an autonomous, second-order, nonlinear ordinary differential equation (ODE),

the solution of which leads us to the following generalization of the commonly encountered

LSE convex function.

Theorem 3. − log
∑
cifi(θi) = − log

∑
αie

βiθi is concave with hyperparameters αi and βi,

of which the LSE is a particular instance with ci = αi = βi = 1. By existence and uniqueness,

all solutions to Equation D.6 must be either of this form or linear combinations of these

functions.

Proof. To simplify notation, let t = θi and y(t) = fi(t), where we drop the independent

variable when it is understood. Thus, we are looking for y such that

y′′ =
(y′)2

y
. (D.7)

Let v(t) = y′(t), w(y) = v(t(y)), and ẇ = dw
dy

. We thus have

v′ =
v2

y
,

ẇ(y) =
dw

dy
(y) =

dv

dt

dt

dy

∣∣∣∣
t(y)

=
v′

y′

∣∣∣∣
t(y)

=
v′

v

∣∣∣∣
t(y)

.

Using Equation D.7, we have

ẇ(y) =
v′(t(y))

w(y)
=
v2(t(y))

w(y)y
=
w2(y)

w(y)y
=
w(y)

y
.
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This ODE is easily solved using seperation of variables, so that we have

lnw = ln y + c0

⇒ w = exp(ln y + d0) = ed0y = d1y,

where d0 is a constant of integration. To solve for y, we have

w(y(t)) = v(t) = y′ = d1y.

As before, y′ = d1y is easily solved using seperation of variables, giving us

ln y =d1t+ d2

⇒ y(t) =d3e
d1t,

where d1 and d3 are constants determined by initial conditions. Returning to our earlier

notation, the solution to Equation D.6 is thus fi(θi) = d3e
d1θi . Letting βi = d1 and αi = cid3

completes the proof.

D.3 Concave extensions for Didea

Recall the discussion in Section 8.2. We define further extensions of Didea’s learning framework

which remain concave and thus afford efficient parameter learning. Didea is a special model,

in that we may reparameterize its conditional log-likelihood either in terms of weighting

each individual shift of the observed spectrum or we may reparameterize its conditional

log-likelihood by building upon the scalar product between the observed and theoretical

spectra to learn a distance matrix between the two.

D.3.1 Sparse weight vector of spectrum shifts

Building upon the reparameterization in Equation 8.9, where we learn a dense vector of

weights for each shift of the observed spectrum, we describe learning a sparse vector of weights

for each shift. The concave objective function of interest is then

max
λ

−
N∑
i=1

log
M∑

τ i0=−M

e
λ
τi0
zi(τ i0) − α‖λ‖1 = max

λ
−

N∑
i=1

log
M∑

τ i0=−M

e
λ
τi0
zi(τ i0) − α

∑
i

|λi|,
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where α ∈ [0, 1] is the regularization strength (typically learned via cross-validation). This

objective remains concave as the negative of the regularizer, ‖ · ‖1, is concave.

Regularization is a common technique in machine learning, where a regularizer is added

to the objective function so that solutions tend towards a particular form. In the case of

L1 regularization, solutions tend to be sparse, i.e., many of the learned parameters tend

to be zero. This is useful in applications where a small subset of parameters are better at

explaining the underlying better than a dense set of parameters. In the case of Didea (and

possibly XCorr), such regularization would be helpful if a compact set of observed spectrum

shifts were better at discriminating against random peptide matches then the entire set of

observed spectrum shifts.

D.3.2 Distance metrics between the observed and theoretical spectra

We describe an extension of Didea’s learning framework to learn different distance metrics

between the theoretical and observed spectra. Specifically, we learn a distance matrix, A,

between the theoretical. Recall that Didea’s original log-likelihood was

log p(τ0 = 0|s, x, λ) = log eλ(b+y)T s − log
M∑

τ=−M

eλ(b+y)T sτ

= − log
M∑

τ=−M

eλ[(b+y)T sτ−(b+y)T s)]

= − log
M∑

τ=−M

eλ(b+y)T (sτ−s)

= − log
M∑

τ=−M

eλ(b+y)T ŝτ .

We reparameterize this as

log p(τ0 = 0|s, x, λ) = − log
M∑

τ=−M

e(b+y)TAŝτ , (D.8)

where A ∈ R2M+1×R2M+1. Equation D.8 is concave, as it is a linear function of A so that, by

the convexity of the LSE and the composition rules for convex functions, log
∑M

τ=−M e(b+y)TAŝτ
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remains convex in A (we may also rewrite (b + y)TAŝτ = lTAs′ as zTα, where z =

[l1s
′
1l1s

′
2 . . . l1s

′
n l2s

′
1 l2s

′
2 . . . l2s

′
n l3s

′
1 . . . lns

′
n] and α = [a11 . . . a1n a21 . . . a2n . . . ann], in

which case it is obvious Equation D.8 is concave in α and thus A). The overall learning

objective is then

max
A
−

N∑
i=1

log
M∑

τ=−M

e(bi+yi)TAŝiτ . (D.9)

In order to derive gradients for Equation D.9 so that we may optimize it using stochastic

steepest ascent, we rewrite the objective function as

max
A
−

N∑
i=1

log
M∑

τ=−M

e(bi+yi)TAŝiτ

max
A
−

N∑
i=1

log
M∑

τ=−M

e(li)TAŝiτ

max
A
−

N∑
i=1

log
M∑

τ=−M

exp
∑
j

lij
∑
k

ajkŝ
i
τ,k,

where li = bi + yi, ajk is the jth row and kth column element of A, and ŝiτ,k is the kth element

of vector ŝiτ . Letting f(A) = − log
∑M

τ=−M e(bi+yi)TAŝiτ , we thus have

δf(A)

δAjk
=

−1∑
τ e

(li)TAŝiτ

∑
τ

lij ŝ
i
τ,ke

(li)TAŝiτ

⇒ δf(A)

δA
=

−1∑
τ e

(li)TAŝiτ

∑
τ

li(ŝiτ )
T e(li)TAŝiτ . (D.10)

The SGA update in Equation D.10 has a very intuitive form. A is updated as a linear

combination of the outer products between li and ŝiτ for all shifts τ . This outer product,

as well as the matrix product (li)TAŝiτ , may be efficiently computed using optimized linear

algebra packages.
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Appendix E

MS/MS DATABASE SEARCH TIMING RESULTS

Table E.1: % running time of trellis compared to XCorr mixture model.

dataset trellis XCorr

Yeast-1 9.98% 100%

Worm-1 6.17% 100%

Malaria 10.56% 100%

Table E.2: % running time of trellis methods compared to original DRIP.

dataset trellisspeed trellisbase DRIP

Yeast-1 7.78% 14.80% 100%

Worm-1 8.59% 16.36% 100%

Malaria 8.05% 15.50% 100%
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